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Background and Objective: Rh is one of the most clinically important blood group systems. It 
comprises five major antigens (D, C, c, E, and e) in addition to several low and high prevalence antigens. 
RhD and RhCE proteins are encoded by two adjacent genes namely RHD and RHCE. These genes are 
highly homologous and polymorphic resulting in numerous variant alleles that encode variant antigens. 
In this review, we will discuss RHCE genetic diversity, frequency of RHCE variant alleles and their clinical 
aspects, complexities, and the importance of RH genotyping to prevent alloimmunization.
Methods: A search restricted to English language was performed using the PubMed electronic database to 
retrieve publications until June 2021, on RHCE variability and complexity. The Medical Subject Headings 
and free terms used were Rh-Hr Blood-Group System/genetics, sickle cell disease (SCD), RHCE, RHCE 
variants, and Rh antibodies. Other relevant articles were found by checking the reference list of the articles 
collected in the initial search.
Key Content and Findings: Common RhCE antigens are highly immunogenic, and their alloantibodies 
have been involved in delayed hemolytic transfusion reactions (DHTRs) and hemolytic disease of the fetus 
and newborn (HDFN). Because the distribution of C/c and E/e is different among ethnic groups, several 
treatment centers adopt prophylactic CE matching protocols to prevent alloimmunization in chronically 
transfused patients. Despite measures, alloantibody formation against RhCE antigens is still a problem due 
to numerous variant phenotypes, mainly in individuals of African origin. Elucidation of molecular basis for 
RHCE variants has allowed to determine the frequency of these alleles in patients and donors of African 
descent, however, the clinical significance of the Rh alloantibodies elicited by most RHCE variants is still 
unclear. 
Conclusions: Molecular assays allowed considerable progress in the identification of genetic basis and 
characterization of RHCE variant alleles in patients with SCD and blood donors. Advances in molecular 
techniques may enable the screening of rare RhCE donors and improve the support for patients carrying 
variant RhCE phenotype. However, some questions remain to be answered, mainly regarding the clinical 
significance of the RHCE variants.
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Introduction

Rh is the second most clinically important of all blood 
group systems after ABO. It encompasses 56 antigens 
including five major antigens (D, C, c, E, and e) in addition 
to low and high prevalence antigens identified by their 
corresponding antibodies (1,2). RHD and RHCE genes, 
which encode Rh antigens, are highly homologous and 
polymorphic with more than 700 RHD and 200 RHCE 
alleles reported to date (1,3-5). Many described RH alleles 
have been identified in individuals of African origin, and it is 
estimated that 87% of patients with sickle cell disease (SCD) 
and African descent blood donors carry at least one variant 
RH allele (6). This diversity creates clinical challenges and 
causes significant rates of Rh alloimmunization (7).

Rh antibodies are the most common antibodies identified 
in transfused patients, and despite the serological matching 
for D, C, and E antigens and racially matched blood 
transfusions (6), Rh alloimmunization persists due to variant 
Rh antigens present either in patients or blood donors (6-8). 
Importantly, some variant RH alleles have been associated 
with development of clinically significant alloantibodies 
causing delayed hemolytic transfusion reactions (DHTRs) 
or hemolytic disease of the fetus and newborn (HDFN) 
(6,7,9-11). Ideally, patients carrying Rh variants with an 
antibody to a high-prevalence antigen or with multiple 
common antibodies need compatible red blood cell (RBC) 
units. However, providing such compatible units is often 
a challenge because RH genotyping, required to identify 
the Rh variants, is expensive and is not a routine method; 
consequently, partial antigens are usually recognized 
once alloantibodies have already been formed or when a 
transfusion reaction has occurred (12). In this review, we will 
discuss the molecular basis for altered RhCE phenotypes, 
frequency of variant RHCE alleles, clinical significance 
of alloantibodies, SCD and RHCE complexities, and the 
importance of RH genotyping to prevent alloimmunization. 
We present the following article in accordance with 
the Narrative Review checklist (available at https://aob.
amegroups.com/article/view/10.21037/aob-21-76/rc).

Methods

The literature search strategy summary and the detailed 
search strategy used in PubMed database to retrieve 
publications on RHCE variability and complexity are 
shown in Table 1 and Table S1, respectively. In addition, the 
RHCE allele frequency was collected from the Erythrogene 

database in the 1000 Genomes dataset (13) and the 
nucleotide changes confirmed by checking the Blood Group 
Terminology Table for RHCE at the International Society 
of Blood Transfusion (ISBT) website (1).

Overview on Rh blood group system

The Rh blood group system encompasses two highly 
homologous genes, RHD and RHCE, closely located on 
the short arm of chromosome 1 (1p36.11), which encode 
RhD and RhCE proteins differing in only 32–35 of 417 
amino acids (14-17). These genes are inherent together as 
a haplotype, each composed of ten exons, and have more 
than 90% sequence similarity (18). The RHD gene encodes 
the RhD protein, carrying the D antigen (RH1) while the 
RHCE gene encodes the RhCE protein, carrying C (RH2) 
or c (RH4) and E (RH3) or e (RH5) antigens. The RhD 
and RhCE proteins are integral to the red cell membrane 
and form a complex with the RhAG protein, a chaperone 
required for Rh antigens expression, encoded by RHAG 
gene on chromosome 6. The absence of RhAG protein 
causes lack of RhD and RhCE protein expression leading to 
a rare Rhnull phenotype, named regulator Rhnull. Individuals 
with this phenotype can readily form alloantibodies on 
exposure of Rh antigens (3,15,19).

RhCE antigens

The four main RHCE alleles encode the Ce, CE, ce, and 
cE antigen combinations (3) and changes to the RHCE 
gene can alter their antigen expression and/or generate new  
antigens (20). The C and c antigens specificity are 
determined by 4 non-synonymous substitution, c.48G>C 
(p.Trp16Cys) ,  c .178C>A (p.Leu60Ile) ,  c .203G>A 
(p.Asn68Ser), and c.307T>C (p.Pro103Ser); and 2 
synonymous substitution c.150C>T and c.201A>G (1,21). 
Among these changes, only the p.Pro103Ser substitution, 
predicted to reside on the second extracellular loop of the 
RhCE protein, is associated with the C/c immunogenicity 
(15,21). As amino acids encoded by exon 2 of the RHCe 
allele are identical to those encoded by exon 2 of the 
RHD gene (22), next-generation sequencing data strongly 
support that a hybrid allele RHCE*CE-D(2)-CE is causal 
for the C+ antigen expression (22,23). The molecular basis 
for E and e specificities are determined by the nucleotide 
change c.676G>C in exon 5, resulting in the amino 
acid substitution, p.Ala226Pro, located on the fourth 
extracellular loop of the RhCE protein (2).

https://aob.amegroups.com/article/view/10.21037/aob-21-76/rc
https://aob.amegroups.com/article/view/10.21037/aob-21-76/rc
https://cdn.amegroups.cn/static/public/AOB-21-76-Supplementary.pdf
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Molecular basis of RHCE variants

Molecular mechanisms responsible for altered or null Rh 
phenotypes have been revealed through molecular typing 
of patients and donors from different ethnic backgrounds 
and over 200 RHCE alleles have been described to date 
(1,4,24-28). The genetic diversity of the RHCE gene is 
generated by at least four molecular mechanisms: (I) single 
nucleotide variations (SNVs), (II) insertions, (III) deletions, 
and (IV) gene rearrangements (gene conversion), that may 
cause weaken and/or partial expression of C, c, E, and e, 
induce expression of low-prevalence antigens, and/or loss 
of expression of high-frequency antigens. Furthermore, 
some genetic alterations in the RHCE may result in a non-
functional RhCE protein (e.g., D‒ ‒, DCw‒, Dc‒ and 
D••). The inheritance of non-functional RHCE alleles in 
conjunction with deleted RHD results in the lack of any 
Rh proteins on the red cells membrane giving rise to the 
amorph Rhnull phenotype (2,15).

SNV is the main molecular mechanism responsible 
for RhCE protein alterations. SNVs are often associated 
with weak RhCE antigen expression when located in the 
coding regions inducing an amino acid change in the 
transmembrane or intracellular regions (29). In contrast, 
an amino acid change in extracellular regions or a change 
in a transmembrane or intracellular region causing 
conformational alterations, can alter epitopes and produce 
partial phenotypes (e.g., partial “e” and “c” due to c. 
733C>G) which are prone to immunization when exposed 
to the normal antigens. Because antigen expression is not 

always reduced in partial Rh phenotypes and serological 
methods cannot distinguish RH variants, partial antigens 
are usually recognized after alloantibodies against missing 
epitopes are formed or when a transfusion reaction has 
occurred (9). RHCE variants may also cause both weak and 
partial antigen expression; for example, the RHCE*ceAG 
allele is associated with a weak and partial “e” due to an 
amino acid substitution (p.Ala85Gly) caused by the SNV 
c.254C>G in exon 2 (30). In addition, SNVs can also 
produce stop codons that prematurely terminate protein 
synthesis, generating null phenotypes [e.g., “E–” and “c–” 
due to c.221G>A (p.Trp74Ter)] (28).

Single amino acid substitutions in the RhCE protein 
also can generate new epitopes. These new epitopes are 
called “low prevalence antigens”, occur in less than 1% 
of the population and are not routinely typed for, but are 
potently immunogenic. Examples include Cw (31), Cx (31),  
Crawford (32), Ew (33), JAL (34-36), V and VS (37-39). 
However, in individuals of African origin V and VS antigen 
are reasonably common (37). Both of them are associated 
with the SNV c.733C>G (p.Leu245Val) predicted to be 
located in the eight transmembrane segment of Rhce 
protein which causes a conformation change within the 
ce polypeptide leading to partial c and partial e antigens 
(38,39). The subsequent loss of V expression results from 
the c.1006G>T (p.Gly336Cys) change on this background 
arising the V‒VS+ phenotype (39).

Insertions and deletions are less frequent and generally 
result in a frameshift and a premature stop codon. For 

Table 1 Search strategy summary

Items Specification

Date of search July 01, 2021

Databases and other sources 
searched

PubMed and reference lists of articles identified in the search

MeSH and free terms used Rh-Hr Blood-Group System/genetics (MeSH), sickle cell disease (MeSH), RHCE, RHCE variants, Rh 
antibodies

Timeframe The limit of database until June 30, 2021

Inclusion and exclusion criteria Articles restricted to English language. No restrictions on publication type

Selection process Independent literature search was performed by the authors (ES and CPA) using MeSH and 
free terms separately and in combination. Titles/abstracts of retrieved articles were checked for 
relevance and selected for further review if addressed RHCE genetics, frequency of RHCE variant 
alleles, clinical significance of variant RHCE alleles, impact of variant RhCE on patients with SCD, 
or molecular characterization of variant RHCE alleles. Additional relevant papers were identified by 
manual searching of reference lists of articles identified in the initial search

SCD, sickle cell disease.



Annals of Blood, 2023Page 4 of 13

© Annals of Blood. All rights reserved. Ann Blood 2023;8:8 | https://dx.doi.org/10.21037/aob-21-76

instance, the RHCE*ceN.01 allele associated with deletion 
of five nucleotides at positions 80-84 (c.80_84delTCTTC) 
introduce a frameshift after p.Leu26 (CTC) causing a 
premature stop codon. As a result, Rhce antigen expression 
is completely abolished from the RBCs (40).

Gene rearrangement between RHD and RHCE is 
common and associated with the formation of hybrid 
alleles that is favored by the proximity, homology and 
tail-to-tail orientation of RH genes (41). For example, 
the most frequent mechanism associated with partial C 
in individuals of African origin are the hybrid RHCE*Ce-
D(4)-ce (RHCE*CeRN) identified in RN individuals, and the 
RHD*DIIIa-CEVS(4-7)-D and RHD*D-CEVS(4-7)-D alleles 
that are part of (C)ceS haplotype 1 and type 2, respectively 
(9,39,42-45).

RHCE*CeRN encodes weak and partial expression of C 
and e antigens, absence of the high-prevalence Sec antigen, 
and expression of low-prevalence RN and DAK antigens. In 
addition, RN erythrocytes slightly overexpress the D antigen 
(46,47). The RN haplotype has been described in people 
of African origin and found to be responsible for partial C 
antigen expression in 11.8% of C+ patients with SCD in 
France (48), although in other countries its frequency is 
lower or absent (12,49,50).

RHD*DIIIa-CEVS(4-7)-D and RHD*D-CEVS(4-7)-D 
alleles are linked to RHCE*ceVS.03 (ce48C, 733G, 1006T) 
composing (C)ceS haplotypes, which do not encode the D 
antigen, instead, they encode partial C, c and e antigens, and 
loss of highly prevalent hrB and HrB antigens (9,39,43,51). 
The partial C encoded by (C)ceS haplotype 1 may have 
variable expression and, in many cases, go undetected until 
alloimmunization occurs (38,39,42). In Caucasians, weak 
C and weak e have been associated with diverse molecular 
events, for example, RHCE*CeMA allele result from the SNV 
c.340C>T in exon 3 which also cause expression of the low-
prevalence Rh antigen, JAL (34,36,52) while RHCE*CeVA 
result from the hybrid RHCE-D(5)-CE allele (53).

Overall, altered forms of e and/or c antigens have 
been associated with numerous RHCE*ce variant alleles in 
people of African origin (Table 2). Importantly, individuals 
with some homozygous RHCE*ce variant alleles may 
also have a loss of high prevalence antigens on the red 
cells increasing the alloimmunization risk, for instance, 
hrS‒ (RH‒18) in RHCE*ceAR, RHCE*ceEK, RHCE*ceBI, 
RHCE*ceMO and RHCE*ceSM carriers; hrB‒ (RH‒31) in 
RHCE*ceAG, RHCE*ceMO, RHCE*ceS, RHCE*ceCF, and 
RHCE*ceVS.02.01 carriers (30,55,56,62). These variants 
should be well-characterized for transfusion purposes 

because their carriers are at risk of alloimmunization. 
Moreover, finding compatible blood for patients carrying 
these variants in both alleles can be a challenge since the 
molecular background of each variant is distinct and they 
are also often inherited along with RHD variant alleles, 
consequently, rare antigen-negative RBCs will be required 
for transfusion (37).

E antigen variants are rare and associated with diverse 
molecular mechanisms encoding weak or partial E antigen 
and have been mostly identified in Caucasians (29,63,64). 
One of the most important alleles reported in association 
with E variants is RHCE*cEEW previously reported as E 
Variant I. This allele is characterized by the amino acid 
substitution p.Met167Lys (c.500T>A) located at the third 
extracellular loop of the RhcE protein leading to an E+ 
partial, weak or negative phenotype (64). In addition, the 
p.Met167Lys substitution is also the molecular basis for 
the rare Ew (RH11) antigen (<0.1% in Caucasians) first 
described in 1955 (65) and associated with few cases of 
HDFN (33,63,65,66).

RHCE variant alleles can be inherited in combination 
with specific RHD variant alleles creating an additional 
degree of complexity and a challenge for transfusion. Some 
combinations are much higher than expected to occur by 
chance, indicating linkage of RHD alleles encoding partial 
D with specific altered RHCE*ce; for example, RHCE*ceAR 
and RHCE*ceEK are often in linkage to RHD*DAR (54,55), 
RHCE*ceS is linked to RHD*DIIIa (61), RHCE*ceTI is linked 
to RHD*DIVa-2 (25), and RHCE*ceMO is often found with 
RHD*DAU0 (56). Frequent RH alleles presenting linkage 
are listed in Table 2.

Frequency of RHCE variants

RHCE variants are more frequent in African descendants 
and people with mixed ancestry than in Caucasians and 
Asians (45,49,50,67). Studies on the diversity and frequency 
of RH alleles in blood donors, and/or patients with SCD 
who are at high risk of alloimmunization have been 
conducted using both in-house and commercial genotyping 
assays (45,49,50,60,67-76). The reported frequencies of 
RHCE variant alleles are inconsistent among reports likely 
due to several reasons, including differences in study design, 
molecular strategies used for RHCE characterization, 
and population ethnicity. Additional bias includes lack of 
consensus on the clinical significance of RHCE variants 
resulting from c.48G>C and c.733C>G [RHCE*ce.01 
(ce48C), RHCE*ceVS.01 (ce733G), and RHCE*ceVS.02 
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(ce48C, 733G)].
In a study from France, including blood donors and 

patients of African origin, showed that among individuals 
with altered expression of RhCE antigens and/or with anti-
RhCE alloantibodies in the presence of the corresponding 
antigen 83% had variant RHCE alleles and RH haplotypes, 
and the most frequent were RN and (C)ces haplotypes, 
RHCE*ceMO, and RHCE*ceAR alleles (75). The same group 
reported in a later study, in French blood donors of African 
origin that 14.2% of that population had a variant RHCE 
allele, being (C)ces type 1 haplotype the most frequent 
followed by RHCE*ceTI, RHCE*ceMO, and RHCE*ceAR 
alleles (45); suggesting that systematic screening of donors for 
RHCE increases the chances of finding rare RHCE variants 
and may help to fulfill the transfusion needs of patients 
requiring an RHCE genotype matching in France (45).

In the US, approximately 85% of patients with SCD 
carry at least one variant RH allele (6). Independent studies 
reported similar frequencies of RHCE variants in African-
American blood donors and patients with SCD, where 
RHCE*ce.01 (ce48C), RHCE*ceVS.01 (ce733G), RHCE*ceTI, 
RHCE*ceAG, and RHCE*ceMO were the most frequent 
RHCE alleles reported; indicating that they probably would 
be able to provide transfusion support to patients with 
SCD, although a large number of genotyped blood donors 
would be needed (37,49).

In Brazil, where the population is highly admixed, the 
presence of at least one clinically relevant RHCE variant 
allele has been found in approximately 45% of patients 
with SCD (12,50) and 53% of blood donors self-declared 
as of African origin (12,60). However, the frequency 
of homozygous RHCE variant alleles or compound 
heterozygous in patients with SCD and donors who self-
declared as of African origin in Brazil is considerably lower, 
ranging from 1.4% to 16.9% (12,50,67). Although RHCE 
variant alleles between patients and donors are similar to 
those found in the US, Brazilian patients with SCD and 
self-declared African origin donors have a high frequency of 
R1r phenotype which demonstrates the genetic influence of 
Caucasian origin (12,50). Nevertheless, characterization of 
donors self-declared as of African origin is the best choice 
for finding compatible blood for patients with SCD, since 
both groups have similar frequencies of RhCE phenotypes 
and RHCE variant alleles (12,77).

Clinical aspects

Alloimmunization is a major adverse effect of blood 

transfusion, increases the risk of DHTRs and reduces the 
availability of compatible RBC units. Alloimmunization 
rates vary depending on antigen profile disparity between 
blood donors and patient, level of antigen immunogenicity, 
patient age, medical conditions, and frequency of 
transfusion events (52,78-80).

Rh antigens are highly immunogenic and can induce 
not only alloantibodies but also autoantibodies. Rh 
alloantibodies are the most frequent antibodies in 
chronically transfused patients (52,78,80). Epidemiological 
study performed using the “Recipient Epidemiology and 
Donor Evaluation Study-III” (RED-III) database showed 
that antibodies against RhCE antigens comprised 47.5% 
of the clinically significant antibodies detected in the 6597 
alloimmunized patients (80). From these, 61.3% were 
anti-E, 18.5% anti-C, 13.2% anti-c, and 2.5% anti-e (80). 
To prevent alloimmunization, it has been recommended the 
use of prophylactic Rh (C/c, E/e) and K antigen matched 
transfusion for chronically transfused patients, especially for 
patients with SCD who are at high risk of alloimmunization 
and have the highest rates of Rh antibodies (81,82). 
Implementation of this practice has demonstrated to reduce 
alloimmunization rate and DHTRs (78,83,84).

In warm autoimmune hemolytic anemia, about 80% 
of patients have in their serum autoantibodies that react 
optimally at 37 ℃ (2). Although most of these autoantibodies 
appear to be “nonspecific”, many of them have a specificity, 
and anti-e is the most common followed by anti-c, -E, 
-D, and -C. Noteworthy, when investigating an apparent 
autoantibody with Rh specificity or unexplained Rh 
antibodies, RhCE variants should be considered since 
they can result in partial antigens that elicit alloantibody 
formation.

The most common RHCE  variant al leles found 
among African descent individuals are RHCE*ce.01 
(ce48C), RHCE*ceVS.01 (ce733G), and RHCE*ceVS.02 
(ce48C, 733G) but the clinical impact of these variants 
is questionable. Although the Rhce protein encoded by 
RHCE*ce.01 (ce48C) allele does not lack epitopes and 
the e antigen is not recognized as partial (85), there are 
studies reporting clinical significance of anti-e in patients 
who carry RHCE*ce.01 (ce48C) allele (6,7,86). Analysis of 
hemoglobin (Hb) and hemoglobin S (HbS) levels in pre- 
and post-transfusion events showed a reduction of Hb 
and an increase in HbS levels in a SCD patient carrying 
anti-e and RHCE*ce.01/(C)ces genotype who was transfused 
with RBC e+ (7); and an improved response to transfusion 
was observed in another SCD patient homozygous for 
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RHCE*ce.01 with anti-e, who received a genotyped-matched 
transfusion (86). Despite these findings, the clinical 
significance of this variant is still controversial and unclear, 
and it is currently recognized that patients with these alleles 
seem to have a lower risk of Rh alloimmunization than 
patients with other altered alleles (49,85).

RHCE*ceVS.01 (ce733G) and RHCE*ceVS.02 (ce48C, 
733G) also have questioned clinical significance although 
both alleles are predicted to generate partial c and e 
antigens and have also been associated with alloantibodies 
(6,7,50,87). For example, a study including 16 e+ SCD 
patients with anti-e, reported that 12 of them (75%) 
presented RHCE*ce.01, RHCE*ceVS.01 or RHCE*ceVS.02 
alleles, and 4 of those 12 (33%) had evidence of DHTR 
due to anti-e (6). In contrast, some experts do not consider 
that RHCE*ceVS.01 (ce733G) and RHCE*ceVS.02 (ce48C, 
733G) encode partial antigens because in their experience 
the anti-e antibodies associated with these molecular 
backgrounds are auto-antibodies (48).

The clinical importance for most antibodies formed 
in patients carrying variant RhCE phenotypes is not 
easy to establish because the individual variability to 
alloimmunization remains poorly understood and the 
reports are often incomplete, particularly regarding 
serology data (88,89). Furthermore, the classification of 
allo- or auto-antibody and the role of the antibodies in a 
DHTR may be difficult to ascertain because allo- as well 
as auto-antibodies can lead to DHTRs (11,90-92). Ideally, 
to discriminate allo- and auto-antibody an auto-adsorption 
assay should be performed. Nevertheless, auto-adsorption 
assay cannot be performed in a recently transfused patient 
and results may be inconclusive for very weakly expressed 
antigens (93).

Besides partial e, partial c also arises from variant RHCE 
alleles, but fewer cases are reported compared with anti-e. 
Alteration on c antigen expression is rarely found in variant 
phenotypes probably because the structure of c epitope(s) 
involves two adjacent proline residues that might form a more 
stable structure resistant to perturbations induced by changes 
in upstream or downstream (94). Nevertheless, some cases of 
partial c involving different variant RHCE alleles have been 
reported; for example, RHCE*ceAR (95,96), RHCE*ceMO (55),  
RHCE*ceJAL (35), RHCE*ceCF (62), RHCE*ceEK (10), 
RHCE*ceTI (25) and also (C)ces haplotype (51).

Anti-C elicited by partial C expression is also commonly 
reported, mostly in patients with SCD. Studies in a cohort 
of SCD patients showed that 20–30% of patients with 
C+ phenotype have partial C, mostly as a result of (C)

ceS and RN haplotypes, and have a high risk of anti-C 
alloimmunization if transfused with conventional C+ units 
(9,48,49). Analysis of the clinical significance of this antibody 
showed heterogeneous results; however, some reports 
revealed DHTR after transfusion with C+ RBCs (6,9).

Patients carrying variant RHCE alleles with lack of 
expression of high-frequency Rh antigens including HrB 
(RH34), hrB (RH31), Hr (RH18), and/or hrS (RH19) are 
at risk for alloimmunization. Anti-HrB (RH34) and anti-
hrB (RH31) are found mainly in African descent individuals 
carrying (C)ces haplotypes (97,98), and anti-Hr and anti-
hrS are commonly found in patients carrying RHCE*ceAR, 
RHCE*ceEK and RHCE*ceBI. Anti-HrB and anti-Hr react 
with all RBCs of common RhCE phenotype, but react 
strongly with e+ RBCs (98), while anti-hrB and anti-hrS react 
with e+ RBCs, preferentially with Ce and ce haplotypes, 
respectively, but do not react with e‒ (DccEE) RBCs (97). 
Hence, when HrB‒ individuals have an antibody reacting 
against all RBCs of common Rh phenotype, identification 
of anti-HrB associated with anti-hrB is possible through 
adsorption studies with e‒ (DccEE) RBCs. Anti-HrB is 
adsorbed on e‒ RBCs and the remaining reactivity in the 
serum is an anti-hrB. Similarly, when anti-Hr is adsorbed 
on e‒ RBCs, the remaining reactivity in the serum is an 
anti-hrS (55,99,100). The clinical significance of anti-HrB 
and anti-Hr is well established for both RBC transfusion 
and HDFN (55,94,96), and some studies have reported an 
association of anti-hrS and anti-hrB with adverse effects on 
the fetus or DHTR (6,7,9,10,35,56,101). Once anti-hrB or 
anti-hrS is identified, compatible transfusion can be achieved 
by providing e‒ RBCs. However, these patients may 
develop anti-E (if E–), and anti-HrB or -Hr which may lead 
to complications in antibody identification and provision of 
suitable blood.

The mechanism for loss of expression of hrS and hrB 

has not been fully elucidated, and specific epitope(s) and 
residues involved have not been definitively localized on 
the Rh proteins (30,56). The inconsistency in serologic 
results and the lack of antisera support the use of RH 
genotyping for classification of RBCs with altered Rh 
antigens. In addition, multiple molecular backgrounds 
encode similar phenotype as shown in Table 2; however, 
patients with antibodies elicited by those variants are not 
always compatible with donor’s RBCs with the same RhCE 
phenotype but different molecular background (37,96). For 
example, anti-c developed by a patient carrying RHCE*ceAR/
Ce reacts with RBCs with RHCE*ceEK and RHCE*ceBI, but 
not with RHCE*ceMO and RHCE*ceJAL, suggesting that 
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the c antigen encoded by RHCE*ceAR allele is different 
than that encoded by RHCE*ceEK and RHCE*ceBI and may 
express common epitopes with the c antigens encoded by 
RHCE*ceMO and RHCE*ceJAL (96). Therefore, for efficient 
and safe blood transfusion, RH genotyping and molecular 
matching is recommended.

SCD and RHCE complexities

Patients with SCD are chronically transfused and usually 
highly immunized for Rh antigens. The difference in 
frequency of RhCE antigens among ethnic groups greatly 
contributes to alloimmunization because in many countries 
blood donors are mostly of European descent, while SCD 
is prevalent in African descendants (102-104). Selection of 
blood donors self-declared as African descent for patients 
with SCD is a good transfusion strategy adopted by several 
centers to provide a more similar phenotypic profile and 
avoid RBC alloimmunization without overuse of D‒ RBC 
units, since in individuals from African origin the haplotype 
Dce is more frequent, while in Caucasians DCe haplotype 
is more common (49).

A common strategy for reducing the alloimmunization 
risk in patients with SCD has been to provide prophylactic 
matching RBC units for C, E, and K antigens (105,106). 
Regardless of this strategy, alloimmunization against Rh 
antigens continues to occur due to Rh complexities. The 
presence of variant RHCE alleles in the SCD population 
has been shown to range from 27% to 58% (6,12,37,67) 
and patients with SCD carrying variant alleles have a higher 
risk for alloimmunization (7,48). In the US, 13% of patients 
with SCD who developed RhCE-alloantibodies were 
carriers of partial antigen (49), and in France the presence 
of anti-C was detected in 14.3–30% of patients with partial 
C antigen (9,88).

Recent evidence about the impact of variant RhCE 
on patients with SCD has expanded the application of 
RH genotyping since the variants are not distinguished 
by serological techniques. Special attention to RhCE 
phenotyping may indicate an altered antigen expression, 
and further genotyping can inform if the patient is at risk 
for alloimmunization or to provide insight to determine if 
Rh antibodies are allo- or auto-antibodies, predict clinical 
significance, and aid in transfusion decisions (49).

RH genotyping is a great strategy to provide superior 
matching, reduce alloimmunization and improve red cell 
utilization (107). Genotype-matching can be achieved by 
high-throughput genotyping, which offers significant cost 

savings in both labor and reagents compared with antigen 
typing by serologic methods, and expands testing to detect 
genetic variation of antigen expression (107). However, 
genotyping is still of high cost, fact that leads to the 
development and use of selection strategies to screen donors 
with rare RhCE phenotypes, to increase the probability to 
find them at an affordable cost. The recruitment of donors 
self-declared as African descent to provide RH genetic 
matching has also been the best choice, as indicated by 
reports that showed similar frequency of RHCE variant 
alleles among African descendant donors and patients with 
SCD, even in countries with ethnic admixture (12,49,77). 
Patient classification in responders and non-responders 
could be important to restrict molecular matching to 
patients with higher chance to develop alloantibody (48,105). 
Centralization of genotyping tests in larger centers has 
been suggested as alternative that would give support to 
the smaller centers that frequently transfuse patients with 
SCD (105). Alternatively, prioritizing some conventional 
molecular tests (allele-specific PCR or PCR-RFLP) 
targeting specific SNVs, such as c.733G>C, c.254C>G and 
c.667G>T to screen the most common variants can also 
be a useful strategy (108). Additionally, selection of donors 
with Fy(a‒b‒) or weak D phenotype may increase the 
chances of identifying donors lacking high-frequency RhCE  
antigens (12,77).

Conclusions

RhCE antigens have a significant role in transfusion 
medicine due to their high immunogenicity and the 
hemolytic power of their antibodies. In the last two decades, 
studies have been conducted to elucidate the presence of 
unexplained RhCE antibodies. Molecular assays allowed 
considerable progress in the identification of genetic basis 
and characterization of RHCE variant alleles in patients 
with SCD and blood donors. Current knowledge about 
variant allele frequencies in different ethnicities allows 
the blood centers to define target variants for screening 
aiming to provide matched RBCs to most patients. 
However, some questions remain to be answered, mainly 
regarding the clinical significance of the RHCE variants. 
Except for anti-HrB and anti-Hr, the clinical importance 
of antibodies elicited by variant phenotypes is unclear. The 
interpretations of events that define clinical significance 
are inconsistent and require comprehensive studies with 
extensive serological tests and clear association with clinical 
observations. Additionally, although more than one genetic 
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variant can predict the same phenotype some of those can 
be incompatible for transfusion. Therefore, studies that 
evaluate cross-matching among genetic variants predicting 
similar phenotype but with different genetic backgrounds 
are paramount to use genotyping for expanding the 
availability of donors.

Finally, transfusion of patients carrying variant RhCE 
phenotype is still a significant challenge in transfusion 
medicine. Although genotyping revolutionized the 
knowledge of RhCE variants, its application in routine 
immunohematology, for donor screening and molecular-
matching, is still  cost-prohibitive. We expect that 
technological advances, such as next-generation sequencing 
or large-scale genotyping microarray platforms, allow 
screening of rare RhCE donors to improve transfusion care 
for patients with variant RhCE phenotype.
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Supplementary

Table S1 Detailed search strategy used in PubMed database

Search Query Results

#7 Filters: English language, publication dates from 1000/1/1¥-2021/6/30 325

#6 #4 OR #5 352

#5 #2 AND #3 43

#4 #1 AND #2 336

#3 cell disease, sickle[MeSH Terms] 24,283

#2 (“RHCE”) OR (“ RHCE variants”) OR (“Rh antibodies”) 959

#1 Rh-Hr Blood-Group System/genetics*[MeSH Terms] 1,647
¥, corresponds to the limit of the database.


