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Introduction

Thrombotic thrombocytopenic purpura (TTP) is caused by 
a severe deficiency of plasma metalloprotease ADAMTS13 
(A Disintegrin And Metalloprotease with ThromboSpondin 
type 1 repeats, 13) (1-5). ADAMTS13 is primarily 
synthesized in hepatic stellate cells (6-8) and endothelial 
cells (8-10), it is then released into the blood stream where 
it cleaves endothelium- and platelet-derived ultra-large (UL) 
von Willebrand factor (VWF) (11-13). The proteolysis of 
ULVWF is crucial for normal hemostasis and inhibition of 

inflammation (13-16). When the ability to cleave ULVWF 
is compromised, ULVWF multimers accumulate on 
endothelial surfaces or at the site of vascular injury where 
they recruit platelets from circulation, thus promoting 
the formation of occlusive thrombi in small arterioles 
and capillaries. This leads to systemic tissue ischemia and 
damage, the pathognomonic feature of TTP (11,17).

TTP is a rare but potentially fatal blood disorder, 
charac te r i zed  by  s evere  thrombocy topen ia  and 
microangiopathic hemolytic anemia with various degrees 
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of organ dysfunction (18,19). Most TTP cases are caused 
by immunoglobulin G autoantibodies that bind and inhibit 
plasma ADAMTS13 (i.e., immune TTP or iTTP) (20-23). 
Rarely, TTP may also be caused by hereditary deficiency 
of plasma ADAMTS13 activity resulting from ADAMTS13 
mutations (i.e., hereditary TTP or hTTP) (5,24-27). The 
mortality of TTP was ~90% when left unrecognized or 
untreated (18,28). Significant progress has been made in 
the past decades in terms of early diagnosis and therapeutic 
intervention for TTP, which has dramatically reduced the 
mortality and morbidity associated with the disease.

Therapeutic plasma exchange (TPE), in conjunction 
with corticosteroids, caplacizumab, rituximab, or other 
immunosuppressives, known as “triple therapy”, have been 
recommended by the International Society of Thrombosis 
and Haemostasis (ISTH) for all patients with new or 
relapsed iTTP (29). This combination of therapy has 
become the standard of care for iTTP (29-34). However, 
the mechanism underlying the onset, progression, 
exacerbation and/or relapse of TTP remains poorly 
understood.

This review will describe several animal models of TTP 
developed in past decades, which may provide tools for 
further assessing the potential environmental and/or genetic 
triggers of TTP and test potential novel therapeutics 
for TTP. We present this article in accordance with the 
Narrative Review reporting checklist (available at https://
aob.amegroups.com/article/view/10.21037/aob-22-18/rc).

Methods

We performed a literature search through PubMed from 
1969 to 2022 using free text: TTP and animal model (Table 1).  
We found a total of 67 peer-reviewed articles. Of these,  
34 articles that did not discuss TTP models were excluded, 
and this gave us 33 articles for analysis and review. Additional 

articles were included based on historic reading database.

Results

Hereditary TTP models

In hTTP, mutations in ADAMTS13 result in severe 
deficiency of plasma ADAMTS13 activity (2,5,24,27,35-38),  
primarily resulting from defective secretion of the 
ADAMTS13 protein (39). To model this, Adamts13 in 
animals was deleted to render ADAMTS13 nonfunctional. 
Both Adamts13-null mice and zebrafish models were 
generated with a classic homologous recombination 
through embryonic stem (ES) cells and CRISPR/cas gene 
editing approach, respectively. These animals were fully 
characterized and recapitulated some of the key clinical 
features of TTP in humans including thrombocytopenia, 
microangiopathic hemolytic anemia, and microvascular 
thrombosis in major organ tissue, etc. (Figure 1).

Mouse models
The first mouse model of TTP was established by Motto 
et al. (40) by deletion of several critical exons in the 
Adamts13 gene. Surprisingly, mice with nonfunctional 
Adamts13 (i.e., Adamts13-/-) in C57BL/6J background did 
not develop signs and symptoms consistent with TTP. 
However, after being crossed with CASA/Rk mice that 
have elevated plasma levels of VWF for several generations, 
the resulting new Adamts13-/- CASA/Rk mice developed 
spontaneous thrombocytopenia and showed a significantly 
decreased survival rate. Moreover, challenging these mice 
with a bacterial toxin, namely shigatoxin-2, could result 
in more profound and persistent thrombocytopenia, 
microangiopathic hemolytic anemia, and widespread VWF-
rich thrombi in the small vessels, as well as an increased 
mortality rate (40). These are the classic features of TTP. 

Table 1 The search strategy summary

Items Specification

Date of search September 25, 2022

Databases and other sources searched PubMed

Search terms used Thrombotic thrombocytopenic purpura and animal model

Timeframe 1969–2022

Inclusion and exclusion criteria Inclusion: peer-reviewed articles. Exclusion: no animal model used or discussed

Selection process Both authors conducted the selection with independent search

https://aob.amegroups.com/article/view/10.21037/aob-22-18/rc
https://aob.amegroups.com/article/view/10.21037/aob-22-18/rc
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These results recapitulate some of the features in human 
hTTP and suggest that severe ADAMTS13 deficiency alone 
may not be sufficient for the development of an acute episode 
of TTP; an additional environmental trigger or other genetic 
factors may contribute to the onset and progression of TTP 
resulting from severe ADAMTS13 deficiency.

This mouse model has been widely used by other 
investigators for characterizing the nature and mechanism 
of a potential environmental trigger (41), for studying the 
biological functions of ADAMTS13 for anti-thrombosis 
and anti-inflammation (12-16,42,43), and for testing 
potential novel therapeutics (44-47). For instance, Huang  
et al. (41) utilized the murine model to test which subunit of 
Shiga toxin is required for triggering TTP and what is the 
molecular mechanism underlying such a triggering effect. 
There are two variants of bacterial Shiga toxin: Stx1 and Stx2, 
each is composed of one catalytically active A subunit and 5 
identical B subunits (48). While the A subunit is responsible 

for cytotoxicity of the toxin, B subunits mediate binding to 
cell-surface receptors (49). When injected into Adamts13-/- 
mice (CAST/Ei mice), the B subunits from either Stx1 or 
Stx2 appeared to be sufficient to trigger TTP (41), resulting 
from acute release of endothelial VWF (50,51).

To confirm whether an elevated plasma level of VWF 
is sufficient to trigger TTP when plasma ADAMTS13 is 
severely deficient, Schiviz et al. (52) reported the creation 
of a similar murine model. Again, no spontaneous TTP 
was observed in the Adamts13-/- mice. However, a single 
intravenous bolus of recombinant human VWF (rhVWF) 
(2,000 units/kg body weight) into Adamts13-/- mice rapidly 
induced a profound but transient thrombocytopenia. 
The platelet count returned to normal within one day of 
the rhVWF challenge. Despite the transient nature of 
thrombocytopenia, the presence of fragmentation of red 
blood cells (or schistocytosis), low hematocrit, and elevated 
serum lactate dehydrogenase (LDH) levels suggest the 

TTP

Hereditary TTP

Acquired TTP

Adamts13−/− CASA/Rk, CAST/Ei, C57BL/6J, 
and B6.129 stains

• i.v. injection of Shigatoxin 
• i.v. injection of Shigatoxin subunit B
• i.v. injection of recombinant human VWF

WT Papio ursinus
• i.v. injection of inhibitory anti-human 

ADAMTS13 mAb
• No trigger 

WT CASA/Rk, C57BL/6J stains 
• i.v. or r.o. injection of inhibitory anti- mouse 

ADAMTS13 mAb + recombinant human VWF or 
VWF purified from human plasma

WT Sprague-Dawley stain
• i.v. injection of inhibitory anti-human ADAMTS13 

polyclonal Ab + recombinant human VWF

Adamts13−/− Danio rerio
• i.p. injection of histone

Figure 1 Animal models established for studying TTP. Animal models of TTP can be classified into two major groups: hereditary (non-
immune) and acquired (immune-mediated) TTP. Hereditary TTP models include Adamts13-/- mice in various strains, such as C57BL/6J, 
B6.129, CASA/Rk, and CAST/Ei, and Adamts13-/- zebrafish. The first two mouse stains (C57BL/6J and B6.129) have low plasma levels 
of VWF, while the latter two strains (CASA/Rk and CASA/Ei) have high plasma levels of VWF. In all these mouse strains with severe 
ADAMTS13 deficiency, spontaneous TTP is lacking, but an acute TTP could be elicited by an exogenous trigger, such as an intravenous 
administration of Shigatoxin-2, or its subunit B, or rhVWF or rmVWF. However, Adamts13-/- zebrafish developed a spontaneous 
thrombocytopenia which was exacerbated by an intraperitoneal administration of histone, resulting in more profound and persistent 
thrombocytopenia, and an increased mortality rate. Acquired TTP models were created by injection or expression of an inhibitory antibody 
that inhibits plasma ADAMTS13 activity in various animals including baboons, rats, and mice. In balloons, spontaneous TTP occurred 
following an injection of a monoclonal inhibitory antibody against human ADAMTS13 even without a trigger; in rats and mice, TTP did not 
occur unless being challenged with a high dose of rhVWF or rmVWF. TTP, thrombotic thrombocytopenic purpura; VWF, von Willebrand 
factor; rhVWF, recombinant human VWF; rmVWF, recombinant murine VWF; i.v., intravenous; i.p., intraperitoneal; and r.o., retro-orbital. 
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development of TTP in these mice following the rhVWF 
challenge. They further tested the efficacy of recombinant 
human ADAMTS13 (rhADAMTS13) in preventing or 
treating TTP in this model. As shown, an administration 
of rhADAMTS13 prior to or together with the rhVWF 
challenge protected Adamts13-/- mice from developing an 
acute TTP or at least reduced the severity of the disease.

To test the efficacy of adeno-associated virus serotype 8 
(AAV8)-mediated gene therapy for hTTP, the Adamts13-/- 
mice generated by Dr. Motto (40) were utilized. Jin  
et al. (45) reported that administration of AAV8-hAAT-
mdtcs (a truncated form of ADAMTS13) at doses greater 
than 2.6×1011 vg/kg body weight resulted in sustained 
expression of plasma ADAMTS13 activity at therapeutic 
levels. Expression of this truncated ADAMTS13 variant 
essentially eliminated the circulating ULVWF multimers, 
prevented severe thrombocytopenia, and reduced mortality in 
Adamts13-/- mice following a challenge with shigatoxin-2 (45).  
The data demonstrates the efficacy and supports the 
possibility of using the AAV-mediated gene therapy strategy 
for treatment of hereditary TTP in humans.

Zebrafish models
Zebrafish have gained their popularity and recognition as 
an excellent vertebrate animal model to study human blood 
diseases (53-55). The hemostasis-related genes including 
vwf and adamts13 in zebrafish are highly conserved with 
their corresponding orthologs in humans (56-58). Zebrafish 
thrombocytes, which are functionally equivalent to platelets, 
contain receptors that respond to human platelet agonists 
including thrombin, adenosinediphosphate (ADP), and 
collagen, etc. (59-61).

We reported the first TTP model in zebrafish created 
by CRISPR/Cas9 (62). The results demonstrated that 
adamts13-/- (null) zebrafish were viable, but with a 30% 
reduction in their total thrombocyte counts (62). An 
intraperitoneal administration of lysine-rich histone, a 
molecule of damage-associated molecular patterns (DAMPs) 
(63-65), into these zebrafish resulted in severe and persistent 
thrombocytopenia, fragmentation of erythrocytes, formation 
of VWF-rich microvascular thrombi, and increased 
mortality, consistent with the TTP phenotype (62). 
Moreover, a deletion of vwf (vwf-/-) essentially rescued either 
spontaneous thrombocytopenia or histone-induced TTP 
in adamts13-/- zebrafish (62), further confirming the critical 
roles of ADAMTS13 and VWF in the pathogenesis of TTP 
(Figure 1). These zebrafish models will be used to discover 
the role and mechanism of novel environmental factors or 

genetic modifiers in the pathogenesis of TTP.

Acquired TTP models

To date, there is no animal of true autoimmune TTP beside 
humans. In humans, TTP is primarily caused by IgG type 
autoantibodies against ADAMTS13 (21-23,66-73). Risk 
factors for the development of such autoantibodies are 
not clear, although TTP is more commonly seen in young 
females, particularly of African descent (74,75).

To generate acquired deficiency of ADAMTS13, an 
inhibitory antibody (monoclonal or polyclonal) against 
ADAMTS13 was injected into a wild-type animal to 
inhibit plasma ADAMTS13 activity (Figure 1). Following 
antibody administration, plasma ADAMTS13 activity and 
the clinical features of TTP were assessed. Similar to the 
hTTP model, a certain environmental trigger was used to 
incite an acute episode of TTP, if animals with acquired 
deficiency of plasma ADAMTS13 did not develop the signs 
and laboratory evidence of TTP.

Baboon models
Feys et al. (76) reported the first non-human primate TTP 
model by repeated injections of an inhibitory monoclonal 
antibody (mAb) to the wild-type baboon (Papio ursinus). 
They found that a 4-day functional inhibition of plasma 
ADAMTS13 activity was sufficient to induce spontaneous 
TTP in baboons without an additional trigger. The 
baboons receiving inhibitory mAb presented with a 
characteristic hematologic picture of TTP, including 
severe thrombocytopenia, schistocytic hemolytic anemia, 
and a rapid rise in serum LDH activity; additionally, 
immunohistochemical studies revealed the presence of 
disseminated platelet- and VWF-rich thrombi in several 
major organs including kidneys, heart, brain, and spleen. 
Interestingly, these baboons did not develop a fatal 
condition (Figure 1). Nevertheless, these results indicate 
that there may be an unidentified genetic or environmental 
factor that confers baboons’ susceptibility to TTP when 
their plasma ADAMTS13 activity is profoundly inhibited. 
Additionally, the no-fatality resulting from the baboon 
model of TTP is consistent with the transient nature of 
supplemented inhibitory antibodies and some potential 
mechanisms present in baboons that confer a survival 
benefit in the case of acute TTP.

Rat models
Tersteeg et al. (77) reported the first rat model of TTP. 
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A polyclonal antibody against ADAMTS13 (650 U/kg) 
was used to block plasma ADAMTS13 activity in wild-
type Sprague-Dawley rats. When challenged with rhVWF  
(2,000 U/kg), these animals with antibody-mediated 
inhibition of plasma ADAMTS13 activity displayed 
severe “TTP-like” signs and symptoms, including 
thrombocytopenia, hemolytic anemia, and VWF-rich 
thrombi in the kidneys and brain. Again, a subsequent 
infusion of rhADAMTS13 (400, 800, or 1,600 U/kg) 
prevented the full development of “TTP-like” symptoms. 
The amount of rhADAMTS13 was able to override the 
injected amount of anti-ADAMTS13 antibodies, thus 
restoring plasma ADAMTS13 activity and allowing the 
normal degradation of ULVWF multimers to occur. The 
rat model may have different uses for investigating the 
biology of ADAMTS13 and its disease association in vivo.

Mouse models
In addition to the genetic mouse models, Deforche et al. (78)  
reported a mouse model with acquired ADAMTS13 
deficiency.  Through extensive screening of  their 
monoclonal antibodies (mAbs) against murine ADAMTS13, 
they found four mAbs that strongly inhibited murine 
ADAMTS13 activity in vitro (~68–90% inhibition) using a 
fluorescent resonance energy transfers (FRETS)-VWF73 
based assay. Two inhibitory mAbs (13B4 and 14H7) were 
injected into wild type mice at 1.25 mg/kg, each resulted in 
nearly complete inhibition of plasma ADAMTS13 activity 
(96%±4% inhibition, day 1 post injection). This led to the 
accumulation of ULVWF in murine plasma. Following 
a single bolus intravenous injection of these two mAbs, 
inhibition of murine plasma ADAMTS13 lasted for more 
than 7 days.

Like genetic deficiency of ADAMTS13 in Adamts13-/- 
mice, the mice with acquired inhibition of plasma 
ADAMTS13 activity did not develop spontaneous TTP 
either. However, 24 hours following an intravenous infusion 
of rhVWF (500 U/kg), these mice developed marked 
thrombocytopenia and elevation of serum LDH, consistent 
with the clinical features of TTP (78) (Figure 1).

To create a persistent acquired deficiency of plasma 
ADAMTS13 act iv i ty,  Ostertag e t  a l .  (79)  used a 
hydrodynamic injection of naked DNA encoding human 
anti-ADAMTS13 scFv4-20 that targets at the spacer 
domain. Ten days following the hydrodynamic injection 
of scFv4-20, plasma ADAMTS13 activity was completely 
absent and ULVWF multimers appeared in plasma and 
thrombus formation after laser injury in cremaster blood 

vessel was significantly enhanced. However, no spontaneous 
thrombocytopenia and hemolysis occurred. When an 
intravenous injection of Shigatoxin-2 was given to the 
mice at 50 ng/kg weight, all mice with severe ADAMTS13 
deficiency developed severe thrombocytopenia and died 
within 5 days. Histology analysis revealed the presence of 
disseminated microvascular thrombosis in several major 
organs including brain, heart, and kidneys in the deceased 
mice. These results demonstrate for the first time the ability 
of a cloned human monoclonal recombinant monovalent 
antibody fragment against ADAMTS13 to recapitulate the 
key pathologic features of untreated acquired TTP in vivo, 
validating the clinical significance of isolated monoclonal 
antibodies and providing a useful animal model for testing 
novel targeted therapeutic approaches for TTP.

Conclusions

In summary, the TTP animal models created from zebrafish 
to non-human primates have helped researchers make 
important progress in understanding the disease mechanism 
and developing new therapeutics. While hTTP and iTTP 
are two distinct forms, in terms of the underlying etiology 
of severe ADAMTS13 deficiency, most iTTP cases also 
exhibit low levels of ADAMTS13 antigen resulting from 
accelerated clearance of ADAMTS13/antibody immune 
complexes. In this regard, iTTP resembles hTTP (80). 
Thus, both genetically modified and antibody-mediated 
animal models may be used to test the role of potential 
environmental factors such as infection and pregnancy or 
potential genetic modifiers such as complement factor H 
mutation (81-83) and ANRKD family proteins (84) in the 
pathogenesis of TTP. Further utilization of these TTP 
animal models will allow us to test the efficacy and safety 
of various targeted therapeutic strategies in addition to the 
restoration of plasma ADAMTS13 activity.

Prospective

Gene editing using the CRISPR/Cas system has made 
creation of animal models easier and more rapid than 
ever. Not only can we create an ADAMTS13 knockout 
animal mutant, but also generate a point-mutation in 
ADAMTS13 and other associated genetic modifiers that 
are found in patients with hTTP. Having a true hTTP 
model, rather than the ADAMTS13 null model, in 
conjunction with mutations in other genetic modifiers, will 
significantly enhance our ability to understand the biology 
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of ADAMTS13 and the pathogenesis of TTP. Finally, 
we are still in urgent need of a true autoimmune TTP 
animal model, which may help our understanding of the 
immunological aspect of the disease, such as the triggers 
of ADAMTS13 autoantibody production and targeted 
immune therapies.
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