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Introduction

Background

Extracorporeal membrane oxygenation (ECMO) support 
has become the mainstay of cardiopulmonary replacement 
therapy in critically ill patients with terminal heart and/or 

lung disease (1). Its indications are becoming increasingly 
broader due to increased awareness and technological 
advances (2). Currently, ECMO support is undertaken for 
patients of varying age (from newborns to adults) and with 
different underlying conditions. 

The ECMO population requires more transfusions 
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than other critically ill patients, and almost all ECMO 
patients are exposed to at least one blood product unit 
during support. The reasons for prompting practitioners 
to transfuse are multifactorial. ECMO leads to an 
increased risk of bleeding due to therapeutic cannulation, 
hemodilution, and activation of coagulation factors and 
cells. Priming volume leads to the hemodilution of almost 
all blood components, including coagulation factors 
and platelets. The extent of hemodilution depends on 
the patient’s body surface area and the desired flow rate. 
Contact and shear stress between the blood column and the 
non-endothelial surface of the circuit leads to hemolysis and 
an inflammatory response. These can induce endothelial 
dysfunction and activation of the coagulation cascade and, 
potentially, consumptive coagulopathy. The absorption 
capacity of the artificial surface can contribute to the 
depletion of fibrinogen and other coagulation factors (3). 
Furthermore, as with all extracorporeal support, ECMO 
requires anticoagulants to avoid thrombosis of the patient’s 
vessels, and clotting of the circuit. 

During ECMO support, the negative pressure and 
turbulence generated by the pumps can lead to hemolysis, 
and hence anemia. Red blood cell (RBC) disruption releases 
factors that promote von Willebrand factor mediated-
platelet adhesion and thrombosis (4). The cell-free plasma 
hemoglobin scavenges endothelial nitric oxide, limiting 
its bioavailability, leading to microvascular vasomotor 
dysregulation. Along with bleeding and hemolysis, anemia 
of chronic disease can contribute to reduced hemoglobin 
levels  in patients  on ECMO support.  Therefore, 
practitioners are inclined to transfuse these patients to 
restore oxygen-carrying capacity and maintain adequate 
oxygen delivery (DO2). 

Rationale and knowledge gap

Blood transfusions have a questionable cost-benefit ratio 
since they are expensive, and can increase morbidity and 
mortality. Packed red blood cells (PRBCs) are a risk-
bearing therapy, particularly in high-acuity patients, such 
as those on ECMO. This special population has several 
intensive care unit (ICU)-related risk factors, including 
volume depletion or overload, infections, longer duration of 
mechanical ventilation, and longer length of ICU stay. All 
of these can contribute to development of such transfusion-
related complications as acute lung injury, infections, fluid 
overload, and immunoreactions (5-7) that can precipitate 

the clinical conditions of these patients. Furthermore, 
prolonged storage of PRBCs can worsen hemolysis, and 
result in the release of free hemoglobin (fHb), which in turn 
causes the depletion of nitrogen oxides, and endothelial 
microvascular vasoconstriction (8). 

To our knowledge, few prior studies have examined 
strategies to spare PRBC, such optimizing blood flow 
and fluid balance or dynamically changing ECMO 
configurations. However, advances in technology consistently 
impacted on transfusion requirements in patients on ECMO 
support. The most recent recommendations from the 
Extracorporeal Life Support Organization (ELSO) suggest 
maintaining hematocrit levels above 40% (which translates 
to hemoglobin levels above 13 g/dL) (9) to optimize 
oxygen delivery with the lowest reasonable blood circuit 
flow. Increasing expertise and bioengineering advances 
over the last 10 years have called these recommendations 
into question. In fact, modern ECMO circuits reduce the 
risk of bleeding and hemolysis (3,10). In addition, despite 
the severity of illness seen in the ECMO population, an 
increasing number of observational studies have shown the 
non-inferiority, in terms of morbidity and mortality, of a 
restrictive approach to transfusion practice with respect to 
liberal ones (11), as demonstrated in non-ECMO supported 
critically ill patients (12-15). In a recent systematic review 
and meta-analysis, the median transfusion threshold for 
both venovenous (VV) and venoarterial (VA) ECMO was  
8 g/dL (12). In a recent Cochrane review, this transfusion 
threshold was shown not to increase mortality risk compared 
with higher thresholds (13). 

Objective

This review examines the practice of blood transfusion 
in studies of ECMO patients and whether a hemoglobin 
trigger is considered when physicians decide to transfuse. 
In addition, we aimed to identify alternative blood 
transfusion strategies to maintain adequate oxygenation, 
such as optimal fluid balance, anticoagulation protocols, 
and dynamic ECMO configurations. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://aob.amegroups.org/article/
view/10.21037/aob-23-11/rc).

Methods

The methods of our search are summarized in Table 1. 

https://aob.amegroups.org/article/view/10.21037/aob-23-11/rc
https://aob.amegroups.org/article/view/10.21037/aob-23-11/rc
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Discussion

Transfusion practice in VV ECMO

Refractory respiratory failure during conventional therapy is 
the main indication for VV ECMO support. Oxygen uptake 
is the major issue in these patients, who generally maintain 
oxygen consumption in the normal range. In this setting, 
transfusing the patient does not further improve oxygen 
delivery despite an adequate oxygen uptake through an 
oxygenator, unless hemoglobin levels reach a critical point 
(14,15). Increasing oxygen extraction can allow oxygen 
uptake to remain stable until oxygen delivery falls below 
a critical level, as during severe anemia or hemorrhagic 
shock (16). There is still insufficient proof that increasing 
hemoglobin levels leads to increased oxygen delivery in the 
presence of oxygen extraction within normal range. When 
oxygen extraction is near 50%, it cannot increase in the 
presence of progressive anemia, and oxygen consumption 
tends to decrease simultaneously. A retrospective study 
investigated the relationship between transfusion practice 
and changes in perfusion markers, such as mixed venous 
saturation (SvO2) and cerebral tissue oxygenation 
measured by near infrared spectroscopy (NIRS) (17). Most 
transfusions did not result in statistically significant changes 
in perfusion markers, revealing that they were administered 
when patients were in a non-dependent oxygen delivery 
state. It is possible that different practitioners transfuse 
patients in order to exploit the hemoglobin buffer effect in 
counteracting the oxygen diffusion deficit. However, futile 
RBC transfusion can limit the patient’s oxygen delivery by 

different mechanisms: (I) an increase in hemoglobin oxygen 
affinity by depletion of 2–3 diphosphoglycerate (2–3 DPG) 
and adenosine-triphosphate (ATP) induced by long storage 
of RBCs (18); (II) an increase in blood viscosity and vascular 
resistance, leading to a potential decrease in cardiac output; 
(III) an increase in hemolysis and thrombosis events. In fact, 
PRBCs have increased osmolar fragility, and are prone to  
hemolysis (19), and free plasma hemoglobin can increase 
vascular resistance by depletion of endothelial NO (20). 

The TRAIN-ECMO survey investigated transfusion 
practices among different centers in patients on VV 
ECMO compared with other critically ill patients, with 
a special emphasis on hemoglobin thresholds used to 
guide the transfusion therapy. The survey revealed a high 
variability in the Hb trigger in these centers, as shown in 
Table 2. Furthermore, patients on VV ECMO support are 
transfused at a higher Hb threshold compared with other 
critically ill patients, but this gap was narrower in higher 
volume centers (28). This high variability and the liberality 
in transfusion practice in VV ECMO patients is perhaps 
due to the lack of evidence on optimal transfusion triggers 
for hemoglobin values in this population (29). As a result, 
various observational studies (Table 2) have confirmed that 
patients receiving VV ECMO are highly transfused, with 
a prevalence approaching 100% (26,30-35), even in non-
bleeding patients (36). However, a multicenter, prospective, 
cohort study reported a reduced PRBC transfusion 
percentage, likely due to advances in technologies and 
increased understanding of patient blood management (37). 

Anticoagulation protocols can increase the risk of 

Table 1 The search strategy summary

Items Specifications

Date of search 01/01/2023

Databases or other source searched PubMed 

Search terms used “Extracorporeal membrane oxygenation”, “ECMO”, “packed red blood cells”, “PRBC”, “transfusion”, 
“blood transfusion”, “patient blood management”, “transfusion requirements”, “ECMO blood flow 
optimizations”, “fluid balance and ECMO”, “dynamic ECMO configuration”

Timeframe 2003–2022

Inclusion and exclusion criteria Inclusion criteria: observational, randomized clinical trial, clinical trial, review, case report written in 
English 

Exclusion criteria: books, chapters or comment or articles written in a non-English language 

Selection process S.T. and P.C. conducted independently of the selection process. Consensus and revision was 
obtained by two senior authors (G.M. and F.S.)

ECMO, extracorporeal membrane oxygenation; PRBC, packed red blood cell.
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Table 2 Observational studies on transfusion practice during VV ECMO support

Author/year (ref.) Study type
Indication 
(surgical/non-
surgical/mixed)

Indications N
ECMO days 
(mean ± SD)

Transfusion 
trigger (g/dL)

PRBC/day 
(mean ± SD)

Survival to 
discharge 

(%)

Guirand 2014, (21)  Retrospective Non-surgical RF (trauma-
associated ARDS)

26 9.3±9.5 NS 0.90±0.36 57.7

Lehle 2015, (8) Retrospective Non-surgical RF 318 NS 8 g/dL 0.31±0.36 NS

Lewandowski  
1997, (22)

Retrospective Non-surgical RF 49 23.1±19.7 15 g/dL 2.10±1.90 55.1

Panigada 2015, (23) Prospective Mixed RF (ARDS/COPD/
bridge to LTx)

22 9.0±5.5 NS 0.97±1.09 NS

Trudzinski 2016, (24) Retrospective Non-surgical RF (ARDS + COPD 
bridge to LTx)

63 22.4±17.4 7 g/dL 0.98±1.17 66.7

Voelker 2015, (25) Retrospective Non-surgical RF 18 21.7±30.0 7 g/dL 1.35±1.16 61.1

Martucci 2019, (26) Retrospective Non-surgical RF (ARDS) 82 14±10.4 8 g/dL NS 77.8

Smith 2001, (27) Retrospective Non-surgical RF (ARDS) 17 4.1±2.1 10 g/dL 7.21±3.13 41.2

VV ECMO, venovenous extracorporeal membrane oxygenation; SD, standard deviation; HCt, hematocrit; PRBC, packed red blood cell; RF, 
respiratory failure; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease; LTx, lung transplantation; 
NS, not specified.

bleeding, and the need for blood products. In a monocentric 
prospective study, an anticoagulation protocol with only 
subcutaneous enoxaparin in prophylactic dosage, was found 
to obviate the need for blood products while achieving 
an adequate safely profile in 61 patients receiving VV 
ECMO and without a history of thrombosis (38). This 
finding should prompt clinicians to reconsider the ELSO 
recommendations to use therapeutic dosages of heparin in 
every patient on VV ECMO. 

Several studies support the safety and feasibility of a 
restrictive transfusion strategy in VV ECMO patients. In a 
retrospective study, a hemoglobin trigger of 7 g/dL did not 
increase mortality in 18 patients undergoing VV ECMO 
for severe acute respiratory distress syndrome (ARDS) (25).  
Similarly, another retrospective study found that a gradual 
decrease in the hemoglobin threshold from 10 to 7 g/dL  
led to a reduced volume of blood transfused, without a 
significant clinical impact in patients on VV ECMO for 
severe ARDS (39). In a recent meta-analysis, a higher 
transfusion threshold was shown to be associated with 
increased mortality (12). For this reason and the above-
mentioned transfusion-related complications, the decision 
to transfuse patients should be weighed considering not 
only absolute hemoglobin values, but the entire clinical 
picture (e.g., hemodynamic parameters, circuit change, 
bleeding). PRBC transfusions should be given when anemia 

becomes critical and affects the body’s oxygen delivery 
(DO2) and coagulation status. In fact, if the patient’s 
metabolic needs can be met with alternative treatments, 
such as adjusting Qec and optimizing fluid balance, the 
decision to transfuse may not be favorable for patient 
outcomes. In the PROTECMO study, an increased daily 
fluid balance led to increased mortality in ARDS patients 
supported with VV ECMO (37). Indeed, a more positive 
fluid balance exposes the patient to the risk of a non-
beneficial high blood flow rate, with an increased risk of 
hemolysis and further PRBC transfusions. Furthermore, the 
authors concluded that PRBC transfusion increases survival 
only when given for hemoglobin level below 7 g/dL. In 
light of this, the administration of fluids is critical, and the 
decision of which fluids to administer is fundamental since 
the principal limiting factor is the time that these fluids 
remain in the intravascular system.

Transfusion practice during VA ECMO

Transfusion is more common in VA ECMO than in VV 
ECMO (8) because of the different pathophysiological 
setting. VA ECMO can unload the right ventricle and 
provide adequate oxygen to the end organs and system. 
It is likely that there is also an increased risk of bleeding 
due to arterial cannulations and more anticoagulation 
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requirements to avoid thrombosis in the heart and in 
low-flow territories (5,13,40,41). In fact, patients who 
require VA ECMO typically have a hemostatic imbalance 
at the time of cannulation, and starting extracorporeal 
support is only an additional indication for anticoagulation  
therapy (42). Moreover, thrombocytopenia is frequent due 
to underlying illness, and the extracorporeal circuit can 
worsen this condition, leading to activation of inflammatory 
pathways and hemolysis (43). Indeed, platelets can adhere 
to surface fibrinogen, leading to thrombocytopenia. There 
is now a novel ECMO circuit that features reduced platelet 
adhesion and minor pro-inflammatory properties (44). 
Finally, a difference should be considered for central and 
peripheral cannulation since peripheral cannulation requires 
mandatory care of the SvO2 because the venous blood 
that enters a damaged lung can carry prevalently poorly 
oxygenated blood flow to the brain.

In the setting of moderate to severe hemorrhage, it is 
probably safer to withhold anticoagulation for VV ECMO 
than it is for VA ECMO, even if several studies have 
reported no life-threatening thromboembolic complications 
after withholding anticoagulation therapy for days 
(41,45). In VA ECMO patients, even exposure to systemic 
anticoagulation only at the time of weaning resulted in a 
reduced risk of bleeding and blood transfusion requirements 
without a significant increase in thromboembolic events.

There is heterogeneity among centers regarding 
hemoglobin trigger used to transfuse patients on VA 
ECMO. As shown in Table 3, some centers adopt a 
restrictive approach while others remain anchored to a 
liberal approach to transfusion. As regard the trigger for 
transfusion, some centers adopt hemoglobin values, others 
hematocrit, and others do not specify the trigger used to 
guide transfusion. The survival to discharge and PRBC 
requirements remain variable.

Practices to reduce RBC transfusion during ECMO support

Several strategies can be employed by healthcare 
practitioners to decrease the requirement for RBC 
transfusion during ECMO support. Initially, minimizing 
blood loss through the reduction or limitation of blood 
samplings can be beneficial. Secondly, decreasing the 
duration of ECMO support may contribute to this goal (62).  
Lastly, standardizing transfusion practices via local protocols 
can provide a consistent approach to minimizing transfusion 
necessities (63,64). 

Transfusion practice aims to increase oxygen delivery, yet 

there are different strategies to reach this objective without 
transfusing patients. 

Blood flow rate
The blood flow rate during ECMO is usually set at  
2–4 L/min, depending on the patient’s size, cardiac 
function, and oxygenation needs. A higher blood flow 
rate can help improve oxygenation and remove carbon 
dioxide, but it also increases the risk of bleeding and other 
complications. Monitoring and maintaining fluid balance is 
a crucial aspect of the management of patients on ECMO 
support. In fact, hypovolemia leads to a reduced blood flow 
rate and hypoperfusion. On the other hand, fluid overload 
can also reduce the blood flow rate, increasing systemic 
blood pressure. Furthermore, the hemodilution induced 
by a positive fluid balance leads to a higher and inefficient 
blood flow rate because it will not be associated with higher 
oxygen delivery. 

Autotransfusion during decannulation
One investigation (65) revealed a significant reduction in 
the volume of RBCs transfused due to autotransfusion 
during decannulation. The authors identified additional 
advantages of autologous blood transfusion, such as a 
diminished immune response, a decreased risk of infectious 
complications, a shorter duration of ICU stay, and an 
improvement in pulmonary function. In another study (63), 
autotransfusion is a practice incorporated within the patient 
blood management protocol.

Perfusion markers
As stated above, practitioners are more likely to transfuse 
ECMO patients, in order to decrease the risk of cardiac 
ischemia and to counteract bleeding and hemodilution 
induced by circuit priming. Despite several studies suggesting 
that a restrictive transfusion strategy can be safe and effective, 
other authors have raised concerns about applying such an 
approach in ECMO population, highlighting the importance 
of carefully assessing each patient’s individual risk factors 
and clinical situation when deciding on the appropriate 
transfusion strategy. In reality, the predefined threshold-
based approach may be inappropriate in the setting of VA-
ECMO due to differences in DO2 requirements between 
patients based on their etiology, disease severity, and ECMO 
modality. In addition, large variations in DO2 can be 
observed in the same patient and between ECMO settings. 
From this perspective, practitioners should transfuse patients 
not to reach an established Hb value but to match metabolic 
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Table 3 Observational studies on transfusion practice during VA ECMO support

Author/year (ref.) Study type
Indication type 
(surgical/non-
surgical/mixed)

Indications N
ECMO days 
(mean ± SD)

Transfusion 
trigger (g/dL 

or HCt%)

PRBC/day 
(mean ± SD)

Survival to 
discharge 

(%)

Bakhtiary 2008, (46) Retrospective Non-surgical Hantavirus 
cardiopulmonary 
syndrome

45 6.4±4.5 NS 2.55±2.03 28.9

Cahill 2018, (47) Retrospective Non-surgical CS 30 7.4±8.2 8 g/dL NS 37.7

Esper 2015, (48) Retrospective Non-surgical CS post-AMI 18 3.3±2.2 NS 3.47±2.36 66.7

Fagnoul 2013, (49) Prospective Non-surgical eCPR 24 1.6±2.1 7 g/dL 8.90±11.25 25

Formica 2010, (50) Retrospective Mixed CS 42 7.9±5.3 30% 3.10±3.90 38.1

Hryniewicz 2016, (51) Retrospective Mixed CS 37 4.7±2.3 NS 2.52±1.61 64.9

Lamarche 2011, (52) Retrospective Mixed CS 32 2.2±2.0 NS 9.08±8.66 NS

Li 2015, (53) Retrospective Surgical CS postcardiotomy 123 4.3±3.7 30% 4.49±2.88 34.1

Loforte 2014, (54) Retrospective Mixed CS 228 10.8±9.2 28% 1.29±1.03 63.2

Marasco 2010, (55) Retrospective Surgical CS post-HTx 39 6.8±2.6 8 g/dL 3.15±1.99 NS

Mikus 2013, (56) Retrospective Surgical CS postcardiotomy 14 9.0±13.8 28% 6.00±0.84 42.9

Mohite 2015, (57) Retrospective Mixed CS 59 8.9±5.1 NS 2.56±1.81 NS

Muehrcke 1996, (58) Retrospective Non-surgical CS 23 2.4±1.5 NS 17.84±8.88 31.8

Opfermann 2016, (59) Retrospective Surgical CS postcardiotomy 300 6.1±4.8 NS 0.74±0.79 51.7

Staudacher 2016, (60) Retrospective Non-surgical CS post-AMI; eCPR 90 2.2±2.7 8 g/dL 0.79±1.51 24.4

Müller 2009, (61) Retrospective Surgical CS 60 9.0±6.1 8 g/dL 1.00±1.06 45

VA ECMO, venoarterial extracorporeal membrane oxygenation; SD, standard deviation; HCt, hematocrit; PRBC, packed red blood cell; 
CS, cardiogenic shock; AMI, acute myocardial infarction; eCPR, extracorporeal cardiopulmonary bypass; HTx, heart transplantation; NS, 
not specified.

demands. Therefore, a more individualized strategy guided 
by a DO2 surrogate, central venous oxygen saturation 
(ScvO2), may be more appropriate in this population. The 
ScvO2 approach has recently been shown to be associated 
with reduced PRBCs in two randomized controlled trials in 
cardiac surgery patients (66,67). Furthermore, looking at the 
trend in ScvO2 might provide useful information on changes 
in oxygen extraction during transfusion and could ameliorate 
patient blood management in ECMO population. 

Pulsating ECMO
Recently, there has been increasing interest in pulsatile 
ECMO as an alternative to continuous VA ECMO. Pulsatile 
flow should ameliorate end-organ perfusion, especially for 
brain, kidney and coronary circulation (68). Furthermore, 
it is believed that pulsatile flow can help to maintain 
microcirculation and reduce inflammation and thrombosis (69).  
Moreover, pulsatile flow may be crucial in unloading the 

left ventricle in refractory cardiogenic shock. If confirmed 
by future research, pulsatile VA ECMO may guarantee 
more efficient oxygen delivery and left ventricle unloading 
compared to classic non-pulsatile VA ECMO, and therefore 
might lead to a decrease in the need for transfusion. 

Hybrid configurations
Several subsets of patients on ECMO support can 
experience a change in their condition and physiologic 
demand. For this reason, ECMO configurations have 
evolved from “pure” veno-venous or veno-arterial ECMO 
to more complex hybrid configurations, with the use of 
additional cannulas to dynamically match physiological 
needs over time (70). For example, patients supported with 
VV ECMO can have inadequate drainage or perfusion, 
cardiovascular failure (frequently of the right heart), 
and drops in oxygen delivery despite adequate oxygen 
uptake. The addition of a third cannula in these patients 
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can be critical in restoring the perfusion deficit and the 
unloading of the right or both ventricles. In patients on VV 
ECMO, cardiac unloading can be achieved with additional 
mechanical support devices, such as an intra-aortic balloon 
pump, counterpulsation or short-term assist devices (71). 
Similarly, patients on VA ECMO can develop a differential 
oxygenation as cardiac native function begins to recover. 
In this condition, the upper body can be less oxygenated 
(Harlequin syndrome or North/South syndrome), and an 
extra inflow cannula introduced into the internal jugular vein 
(veno-venoarterial extracorporeal membrane oxygenation 
or V-VA ECMO) can provide oxygenated blood to the left 
ventricle, and thus the coronary and aortic arch vessels. In 
general, inserting an additional cannula for hybrid ECMO 
carries further risk of bleeding in patients with therapeutic 
anticoagulation. Balancing risks and benefits when considering 
whether to initiate an advanced ECMO configuration is 
critical in avoiding wasted efforts to spare blood transfusions. 
ECMO with two oxygenators in parallel can improve oxygen 
uptake. This is particularly indicated when patients are 
developing multi-organ failure despite conventional ECMO 
configurations. The use of a double oxygenator system 
provides a backup in case of a malfunction or failure of one 
oxygenator, increasing the reliability of the ECMO system. 
More interesting is the use of two oxygenators in parallel, 
which may decrease resistance to blood flow leading to a 
reduction in blood trauma and shear stress. 

Conclusions

PRBC transfusion has a questionable cost-benefit ratio. 
The most widespread clinical practice considers only the 
hemoglobin values when deciding a patient’s transfusion 
needs. However, a growing body of literature suggests 
combining the hemoglobin value with physiological 
parameters, such as oxygen extraction to obviate the need 
for PRBC and improve patient blood management. As an 
increase in oxygen extraction can counteract the decrease 
in oxygen carrying capacity only in cases of isovolemic 
anemia, it is crucial to optimize fluid balance and dynamically 
adjust ECMO blood flow. Moreover, advances in medical 
technologies and clinical expertise will likely make ECMO 
circuits increasingly efficient in matching a patient’s metabolic 
demand and reducing PRBC transfusion requirements.
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