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Introduction

Background

RHD genotyping is a critical part of the modern transfusion 
medicine diagnostic laboratory. D remains one of the most 

clinically significant blood group antigens in transfusion 
and in pregnancy and the significant number of D variants 
described to date compound many investigations requiring 
complex molecular analysis. This review focusses entirely 
on RHD but it should be appreciated that there is similar 
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complexity surrounding RHCE variants. The review cites 
useful resources for cataloguing and describing the clinical 
significance of RHD variants, which genotyping methods 
must be able to define with a high degree of accuracy.

Rationale and knowledge gap

Several vulnerable patient groups are now supported 
significantly by RHD genotyping. In Europe, this has 
included the screening of many European pregnant 
D-negative women to genotype their fetuses in order to 
target the use of prophylactic anti-D to only pregnancies 
where D-positive infants are identified. The review 
describes these mass-scale applications of RHD genotyping 
which have been an outstanding success. Another vulnerable 
patient group which has been supported by RH (both RHD 
and RHCE) genotyping are multi-transfused patients, 
for example, in sickle cell disease. Where conventional 
genotyping technology is limited is that predominantly they 
require that the variant under investigation is previously 
known (mutations) so that polymerase chain reaction (PCR) 
amplification primers and probes can identify them. Next 
generation sequencing (NGS) has the potential to close this 
knowledge gap, it has no requirement to have previously defined 
mutations, with the exception that known RHD and RHCE 
targets are sequenced by gene-specific amplification. However, 
much is yet to be done to ensure that NGS and associated 
bioinformatics can support transfusion medicine laboratories 
effectively. These issues are discussed in this review.

Objective

We feel that the early pioneering years of RH molecular 
biology are often neglected in the literature when referring 
to the pathway leading to techniques that we all take for 
granted. We hope this review will address this and give 
due recognition to the early pioneering work that made 
this approach possible. Whilst the remainder of the 
review primarily focuses on NGS, brief mentions of other 
technologies that have emerged over the past twenty years 
(notably microarray platforms) are made. Finally, we have 
made reference to shortcomings in NGS as applied to RHD 
genotyping which lie predominantly in the bioinformatic 
based approaches to diagnosis. These are yet to be truly 
bespoke to RH and although the sequencing part of this 
approach is straightforward, the accurate reporting of RH 
variants has yet to be fully realized, especially considering 
that many novel variants still await discovery.

A brief history of Rh molecular analysis

The molecular era of Rh research emerged in the 1980s when 
Moore et al., and Carl Gahmberg almost simultaneously 
discovered that a 30–32 kDa red cell membrane protein was 
found in immunoprecipitates prepared from radio-iodinated 
red cells using anti-Rh sera (1,2). It was also realised five years 
later that these immunoprecipitates also contained a diffusely 
migrating (on SDS-PAGE gels) 45–50 kDa glycoprotein, later 
termed the Rh-associated glycoprotein, RhAG (3,4). In this 
relatively short time span, and somewhat serendipitously (as 
there was no direct proof at this stage), the major radio labelled 
30–32 kDa component was assumed to carry all Rh antigens, 
and that RhAG was a tightly associated component that 
was invariably co-immunoprecipitated with anti-Rh. The 
emergence of monoclonal anti-D and other Rh specificities 
enabled two groups to purify both Rh proteins and RhAG 
to homogeneity sufficient to obtain N-terminal amino acid 
sequences (4,5). Using a different approach (hydroxyapatite 
chromatography), Peter Agre’s group of Johns Hopkins 
was also able to obtain N-terminal amino acid sequences of 
RhD proteins (6).

Following the determination of primary amino acid 
sequences of both Rh and RhAG in 1990 two groups 
described the isolation of cDNA clones of a RhCcEe 
mRNA (7,8). Two years later a RHD mRNA was cDNA 
cloned (9,10), and also that encoding RhAG (11). The 
publication of these sequences enabled the widespread 
assessment of Rh alleles, using reverse-transcriptase coupled 
PCR to isolate Rh cDNAs from peripheral blood drawn 
from individuals of known Rh phenotypes. Despite recent 
advances in NGS technologies (which this review will 
address), reverse transcription polymerase chain reaction 
(RT-PCR) followed by full length sequence analysis of 
Rh cDNAs still remains the gold standard method for the 
determination of Rh variants. In 1996 the molecular basis 
of the Rhnull phenotype was defined (12), point mutations in 
RHAG were demonstrated in such phenotype individuals 
showing the critical requirement of the RhAG in Rh 
complex assembly. Consequently, for a full assessment of a 
Rh variant, RHAG should be sequenced in addition to both 
RH genes. This is discussed later in this review.

RT-PCR based determination of Rh variants

At an early stage following Rh cDNA cloning, RT-PCR 
was used in combination with other molecular techniques 
to determine a number of RHD variants which had been 
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described in the literature previously. Initially this included 
the clinically significant DVI variant (13) but rapidly 
included all of the D-categories DII, DIIIa, DIIIb, DIIIc, 
DIVa, DIVb, DVa, DVb, and DVII (14). In the early 
1990s the original 7 D-category system was replaced by 
a nomenclature which was not consistent (three letter 
acronyms, e.g., DFR, DBT, DNU) which initially included 
a D followed by a descriptor which was either the initials of 
the country of origin, anti-D which defined the D variant 
or initials of the propositus (14-16). The International 
Society of Blood Transfusion (ISBT) has also published 
a complete list of RHD (004) alleles (www.ISBTweb.org/
resource/004rhd.html).

Determination of RH gene structure 

Shortly after the description of the first Rh cDNA, southern 
blotting using it as a probe determined that most D-negative 
individuals lacking the RHD gene are caused by a gross 
deletion (17). However, several D negative individuals were 
described that did not have this deletion. Gradually the 
molecular bases of these D-negative phenotypes emerged, 
including the common (in individuals of African ancestry) 
RHD pseudogene RHD*Ψ (18). Point mutations, hybrid 
RHD-RHCE genes, and small deletions were described 
and by the early 2000s it was realised that RH genetics was 
complex and that the various Rh phenotypes could readily 
be determined using molecular techniques (19). Workers 
also began to discover that the two genes RHD and RHCE 
had structural differences first described being an Alu repeat 
inserted in intron 4 of RHCE and that exon 10 of RHD 
was structurally larger (10,20). These physical differences 
opened up the availability of RHD genotyping assays which 
were utilized in the prenatal determination of fetal blood 
group in cases of RHD incompatibility leading to Hemolytic 
Disease of the Fetus and Newborn (HDFN). This eventually 
led to mass scale genotyping of whole European populations 
of RHD-negative women in order to preserve stocks of 
prophylactic anti-D where administration of it to mothers 
carrying D-negative fetuses is not required (21-24).

RH gene structure was further resolved when the 
ten intron/exon boundaries were defined (25). Then in 
2000 Wagner et al., finally resolved the gross RH gene 
architecture based on progress in the human genome 
project and empirical experimentation (26). This paper 
described that RHD and RHCE were arranged in a tail to 
tail configuration and a gene TMEM50A (then termed 
SMP1) was located between them. TMEM50A appears to 

play a role in the expression of the products of the RHCE 
gene (27).

Weak and partial D

Following the cDNA cloning publications described earlier, 
research efforts were directed toward the molecular basis 
of weak D. Weak D has been operationally defined as a 
depression in D antigen site density but with no apparent 
loss of D epitopes, and thus no potential to generate anti-D 
following transfusion or pregnancy. This was in contrast 
to partial D, where D epitopes were missing, and clinically 
significant anti-D can be produced on exposure to normal 
D-positive red cells. Most partial D also have a marked 
depression in D antigen site density (28). Now we realise 
that this black/white definition does not have a precise 
boundary, as many examples of weak D have been described 
that do indeed produce anti-D (29). This has prompted 
several to suggest that the weak/partial D definition be 
abandoned and the term RH variant used instead (30). Early 
efforts to define the molecular basis of weak D had included 
a suggestion that a depression in RhD mRNA levels was 
responsible (31), later shown to be incorrect as described 
below.

In 1999 a breakthrough was achieved regarding the 
molecular basis of weak D. Using long-range PCR to 
amplify all ten RHD exons and flanking intronic regions 
and cDNA analysis Wagner et al. found that in all weak D 
samples investigated they possessed exonic mutations. This 
paper also described the molecular basis of weak D types 
1–16 (32).

Since these pioneering studies describing the molecular 
background of partial and weak D phenotypes well over 
150 weak D phenotypes, and over 100 partial D phenotypes 
have been described. This, along with multiple Del (D-elute) 
phenotypes (where D antigen expression is very weak indeed 
only detectable using sensitive adsorption-elution assays) 
shows a high degree of variability in Rh genetics. It is of 
clinical importance to establish the molecular backgrounds 
of these RH variants in order to inform both transfusion and 
pregnancy management in cases of alloimmunisation. By far 
the best resource available to those requiring information 
regarding RH variants is the Rhesus base website (http://www.
rhesusbase.info) (33) which is curated by Dr. Franz Wagner.

The emergence of DNA microarrays

In 2005–2007 (34,35) two publications appeared describing the 

http://www.ISBTweb.org/resource/004rhd.html
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http://www.rhesusbase.info
http://www.rhesusbase.info
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application of DNA microarrays and bead chip technology to 
the field of blood group genotyping (BGG). Both publications 
were supported by commercial manufacturers that brought 
products to the market [Progenika AG now part of Grifols 
(Derio, Spain) and Bioarray Solutions now part of Immucor 
(Warren, New Jersey, USA)]. Both platforms have subsequently 
been developed both involving probes to blood group specific 
single nucleotide variants (SNVs) attached to beads. Both of 
these platforms and others have found widespread application to 
inventory antigen-negative blood donations in blood banks and 
provide support to multi-transfused patients, notably sickle-cell 
disease (SCD) sufferers.

Array/bead chip technology clearly is of benefit to 
laboratories carrying out BGG. The technology is however 
limited to blood group-specific SNVs where the molecular 
basis has been previously described. This is an obvious 
limitation, but fortunately most clinically significant blood 
group antigens can be genotyped using them. For RH, it is 
clear that there are a significant number of variants still to 
be discovered, for example, we recently discovered 8 new 
variants in a Finnish D-negative pregnant female cohort (see 
later). Considering that RHD and RHCE are highly variable 
in individuals of African ancestry, where SCD is of major 
transfusion concern, higher resolution BGG of these genes 
is desirable. For this reason, direct sequence analysis using 
conventional NGS technology became desirable.

NGS based assessment of RH sequences

The long range-PCR approach adopted by Wagner et al., in 
1999 (32) illustrated the relative simplicity of determining 
new RH variants by the analysis of sequences amplified 
directly from genomic DNA. In many cases the fresh 
samples normally required for RT-PCR analysis were 
unavailable. With the emergence of massively parallel 
sequencing or NGS technologies in 2005 (36), it was 
obvious that these techniques could be readily applied to 
the determination of RH variants. All NGS technologies 
require amplification of genomic targets, followed by 
their fragmentation [with the exception of single molecule 
sequencing (SMS), see later] and massively parallel 
sequencing of these fragments after their capture on beads. 
These sequences are then aligned to the human genome 
sequence, and then assembled utilising software into the 
final sequence readout. It is imperative that sufficient 
fragment populations are sequenced to cover the entire 
sequence, and read depth (numbers of times a particular 
base is sequenced) is a critical quality control in these 

experiments as misincorporations can then be identified and 
ignored, and that there are no gaps in the sequence reads. 
Single base mutations can then be readily identified by 
virtue of a roughly 50:50 split of the sequence read between 
two bases when compared to the human genome reference 
sequence.

For NGS technology to function at all it is critical 
that the human genome sequence (or any target genome 
sequence for that matter) is available. Rather unfortunately 
the RHD reference sequence found in the hg19 and hg38 
human genome builds (those most commonly used by NGS 
software) is a rare RHD variant DAU0 [ISBT RHD*10.00; 
encoded by c1136C.T (p.Thr379Met) in exon 8] which 
was soon realised (37). Thus, any analysis of normal RH 
genes when using the hg19 or hg38 builds will immediately 
identify DAU0-specific SNVs as apparent “mutations” 
when they are not. There are multiple DAU0-specific 
SNVs within its RHD gene (see Figure 1). It was therefore 
of critical importance to establish reference RHD and 
RHCE genes from individuals expressing the most common 
Rh phenotypes.

We and others cited here developed protocols for NGS 
of both RHD and RHCE and for the RHAG gene which 
has been shown to cause RH-ablation in Rhnull phenotypes. 
Several reports have involved the amplification of specific 
RHCE and RHD targets using allele-specific primers in 
order to amplify all or some RHD and RHCE exons and 
flanking intronic regions (38-44) whilst one paper reports 
using consensus RH primers (42). These studies have been 
directed to the management of patients with sickle cell 
disease but have, of course, wider implications to complex 
Rh analysis in patients and donors.

Our protocol is the only one described thus far in the 
literature to be capable of sequencing RHD in its entirety 
[out with whole genome sequencing (WGS)] and we briefly 
describe it here (44). Our method involves the amplification 
of the entire RHD gene in six overlapping long range-
PCR fragments (Figure 2). These were then subjected to 
an Ion-Torrent PGM (personal gene machine) protocol 
(other platforms can of course be utilized) for NGS of these 
products. Initially, and as suggested above, we sequenced 
individuals expressing the most common RhD phenotypes 
to define reference sequences for RHD isolated from 
individuals expressing the most common Rh haplotypes 
Dce, DCe and DcE. In order to ensure that a single 
RHD gene was analysed these individuals were tested for 
RHD zygosity (45) using droplet digital PCR so that only 
hemizygous individuals were sequenced. We found that 38 
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Figure 1 Positions of allelic intronic SNVs found in the RHD gene. Those shown in red are those found in the RHD gene from DcE 
haplotypes; in green are those that differentiate DAU0 from normal RHD haplotypes; those in blue are found in the RHD gene from 
individuals with the Dce and DCe haplotype. Note that DAU0 (hg38) shares SNVs with the DcE haplotype, thus 38 SNVs in total 
differentiate between DcE and Dce/DCe haplotypes. A single SNV at codon T379M in exon 8 is found only in DAU0/hg38, and not shown 
on this figure. Tounsi WA PhD Thesis, University of Plymouth. SNV, single nucleotide variant.

Figure 2 Location of amplicons used to amplify RHD for NGS. Positions of long-range PCR amplicons used to amplify RHD, RHCE 
and RHAG are depicted in relation to their respective exons. Each LR-PCR product was purified and then subjected to next generation 
sequencing using an Ion-Torrent NGS protocol. RHAG sequencing is performed in instances where no changes are identified in either 
of the RH genes. This research was originally published in Blood Advances. Blood Adv. 2018;2:2713-2723. © the American Society of 
Hematology. LR-PCR, long-range polymerase chain reaction; NGS, next generation sequencing.
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SNVs, interspersed throughout the RHD gene, defined the 
differences between the Dce/DCe and DcE RHD genes. 
Interestingly we confirmed the earlier findings that the 
DAU0 gene corresponds to the hg19/38 human genome 
reference sequence, carries 21 intronic SNVs specific for 
DAU0 in addition to the exon 8 mutation encoding T379M 
which is common to all DAU phenotypes (46). Hg19/38/
DAU0 also carries SNVs found in both RHD genes from 
DcE and DCe/Dce haplotypes (Figure 1). Thus, sequencing 
of any RHD variant with NGS technology and utilising 
hg19/38 as reference sequence will all need to consider the 
DAU0 gene mutations before identifying SNVs that would 
characterize any new variant.

We applied our NGS-RHD protocol to the analysis of 35 
Finnish samples that had been identified by virtue of the fact 
they were serologically D-negative pregnant women but had 
detected the presence of fragments of RHD by conventional 
PCR-sequence specific primer (PCR-SSP) methods (47). 
NGS analysis revealed that 16 of these had previously been 
described as partial/D-negative/weak D/Del alleles. Fifteen 
of the remaining samples were found to encode 8 novel D 
variants. The remaining 4 samples failed to amplify various 
amplicon sets using our NGS-RHD method. In one of these 
samples an RHD amplicon described by (40), covering the 
region from exon 2 to exon 7 was amplified. It was found that 
part of intron 2 and the whole of exon 3 was deleted thus 
causing a D-negative phenotype. The other samples could 
not have their molecular basis determined due to the inability 
to amplify the entire RHD gene, but maybe have similar 
molecular backgrounds to the partial RHD gene deletion.

The phasing issue and SMS

The NGS protocol we adopted and that of the major 
commercial supplier of NGS technology, Illumina depends 
on short read sequencing of fragmented DNA products 
of the order of 200–400 bp. Whilst this method is readily 
applicable to samples obtained from hemizygous individuals 
there is an issue in defining maternally or paternally 
inherited mutations in homozygous RHD/RHD individuals. 
Due to the short reads of individual sequencing products, 
it is impossible to phase a number of mutations potentially 
spread across the entire RHD gene. SMS can address this 
issue with long >10 kb reads from the PCR amplicons used 
as starting material. We have used the MinION nanopore 
based sequencing platform to explore this issue (48). 
The results readily show the applicability to sequencing 
homozygous individuals but as 6 RHD-specific amplicons 

were used still does not completely address the phasing 
issue as mutations can occur on more than one amplicon. 
Zhang et al. (49) used a PacBio single molecule sequencer 
to investigate 11 individuals, 2 Caucasian and 9 with African 
ancestry. They achieved reads of 2.1–2.9 kb and used 
phasing markers to establish RH haplotypes. Interestingly 
in an individual carrying the RHD*Ψ, they found a  
5.6 kb translocation of RHD into RHCE encompassing 
part of intron 8, exon 8 and part of intron 9 using this 
methodology. This would remain invisible to conventional 
NGS, illustrating the resolving power of long-read NGS.

Limitations of NGS when analysing RHD genes

As discussed earlier, many RHD variants possess hybrid 
RHD/RHCE genes, for example, all described DVI 
phenotypes. This presents a challenge when using current 
NGS technology for sequence analysis. This is largely due 
to the requirement to amplify long-range PCR amplicons 
prior to sequencing. In order to ensure these products 
are only derived from RHD, the forward and/or reverse 
PCR primers are allele specific. Thus, in hybrid genes 
some products may fail to amplify. An approach using 
combinations of RHD and RHCE specific primers may 
address this but must be bespoke for the variant under 
investigation—rarely an option for a busy reference 
laboratory. This is furthermore complicated by the potential 
occurrence of RHCE variants that harbour portions of the 
RHD gene. WGS coupled with suitable algorithms to define 
hybrid RH gene variants may also resolve these situations.

As already outlined, the universal adoption of the 
human genome sequence assemblies hg19/hg38 in software 
supplied with all NGS platforms is not ideal for BGG 
approaches. The unfortunate finding that the human 
genome sequence for a RHD gene is the rare DAU0 allele 
over complicates analysis. Our group has also found that a 
rare JK gene which is the reference hg19/38 gene does not 
resemble the common JK*A or JK*B alleles also complicates 
the analysis of JK genotypes (Altayar, Madgett & Avent, 
unpublished). For BGG exploiting NGS to be efficient for 
all blood group genes, bespoke databases with reference 
sequences of known blood group genotypes would be 
helpful. Such an approach has been described (50), but 
only includes data from the 1000 Genomes project. WGS, 
coupled with suitable analytical algorithms, has been shown 
to have sufficient resolving power to define RH genotypes 
and has been described recently (51), however full genome 
sequencing still is at a cost of around $1,000 per genome. 
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It would be prudent however to perform such analysis on 
multi-transfused patients or even routine repeat blood 
donors.

Conclusions

This review has primarily focussed on historical aspects 
of RHD gene cloning and analysis that have led to the 
new gold standard approach of RHD genotyping by NGS. 
It is important to stress that much RHD genotyping is 
performed by conventional methods such as allele-specific 
PCR, often in combination with real-time quantitative 
PCR (for example, in prenatal testing used extensively in 
Europe). We have discussed microarray technology which 
is high throughput with several commercial examples being 
available. Another widespread technique in many areas of 
genotyping is the MLPA (multiplex ligation-dependent 
probe amplification) technique developed by MRC-Holland 
in the early 2000s which has been applied to RHD and 
RHCE genotyping (52). Using this technique has shown 
that hybrid RHCE-RHD genes lie in cis to the RHD*Ψ.

NGS undoubtedly provides a powerful tool in the 
armoury of red cell genotyping laboratories. It especially 
provides the ability to determine unknown RH variants 
which are not possible using microarray/bead technology 
that require the SNV combinations to be known in advance. 
There are shortcomings in the software analysis for BGG 
with respect to reference sequence utilisation but could 
readily be addressed by a commercial supplier of NGS kits 
for BGG. Long-read sequencing (single molecule) does 
partially resolve the ability to phase a particular allele but 
still is over complicated when analysing homozygous RHD/
RHD as one will need to assume any detected variant is 
being analysed in tandem with a normal RHD gene, which 
is not always the case. Zygosity determination does also 
give a great deal of analytical power when coupled with 
NGS and should be routinely performed on any sample 
undergoing investigation as hybrid genes can be identified 
using this technology.

NGS still has a way to go before it can be applied 
routinely in BGG, foremost is the requirement to define 
reference sequences for the common blood group alleles 
and their incorporation into suitable analytical software. 
Nevertheless, the evolution of this technology in the past 16 
years has been very significant and should be considered by 
specialist reference laboratories. The abundance of undefined 
RH variants also remains apparent, and NGS offers the best 
high throughput solution to this ongoing issue.
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