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Introduction

Researchers, health authorities, governments, not-for-
profits and the media are common communicators of 
cancer statistics. They often present statistics to the public 
as aggregated values for geopolitical areas. Counts and 
incidence rates are often obtained by state health registries. 
Data privacy and ethics are key concerns even when 
combined to small area statistics. Presenting these statistics 
requires aggregating individual observations for the 
geographical units, also for political and policy purposes. 

Examples of typical geographical units include states, 
provinces, local government areas, and post/zip codes. This 
type of data is routinely collected for public health reasons 
and may be made available to the general public as a service 
to the community.

A cancer atlas is a map, or collection of maps, commonly 
representing cancer incidence or mortality patterns across a 
country, or group of countries. Atlases are key to developing 
hypotheses regarding areas with unusually high rates, and 
geographic correlations (1). The data collection methods 
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across regions and the administrative control within regions 
lends itself to choropleth visualization. Cancer maps and 
atlases date back to Haviland’s maps in 1875, with more 
modern atlases directly evolving from early work in US 
cancer atlases, appearing in 1971 (2). The presentation 
of cancer statistics has increased with greater access to 
computational power and the availability of geographic 
information systems software (3).

This  paper considers  the current visual izat ion 
techniques to communicate statistics to the public and their 
applications to cancer statistics. Alternative approaches 
are posed because they may be more effective than 
contemporary techniques. The differences and historic use 
of these displays is discussed, highlighting the potential and 
the limitations of the visualization methods.

The paper is structured as follows. The next section 
“measures mapped” describes the common statistics 
displayed in disease mapping. Section “visualization 
approaches” focuses on disease map visualizations. It 
describes cancer atlases, presents examples of atlases 
in use today. It discusses the limitations of the most 
commonly used technique for disease mapping, the 
choropleth map. This section also describes alternative 
displays, including the cartogram, which are useful when 
the map has heterogeneously sized geographic units. 
Section “comparison and critique of alternative displays” 
presents the limitations in the production and use of 
alternative displays. Disease maps are more useful when 
made interactive, and common options are described in 
“user interaction”, along with a discussion of benefits and 

disadvantages. The “conclusions” section summarizes this 
survey of the literature, and provides recommendations.

Measures mapped

Epidemiologists and statisticians have developed a range 
of statistics to communicate the burden of cancer, and the 
choice of statistics used in maps has changed in recent 
decades. Table 1 summarizes the measures commonly 
presented in published cancer atlases. Mortality rates are 
commonly presented as relative rates of risk across the 
population, and age-adjusted to correct for the higher 
prevalence of cancers in older populations. As described 
by Howe (7), the Englishman P. Stocks advanced the field 
of mortality statistics by introducing the standardized 
mortality ratios in the 1930s, which was an improvement on 
crude death rates.

The measures displayed are typically aggregations of 
data values over small areas or model estimates. This is 
to protect patient privacy, and for numerical stability. 
The counts of cases in small areas can be difficult to 
obtain as they are often protected for privacy reasons. 
The information released and the statistics presented in 
worldwide cancer atlases are often model estimates. The 
measures described in Table 1 use incidence as the statistic 
of interest, which reports the number of new cases. These 
same statistics can be used to describe the mortality, that is, 
standardized incidence rate is analogous to the standardized 
mortality rate.

Obtaining reliable estimates becomes more difficult as 

Table 1 Common measures for reporting cancer information (Figure 1)

Measure Details Figure

1. Cancer incidence counts The number of new cases occurring in a specified period and geographic area (4) –

2. Incidence rate (per 100,000) The frequency of cases relative to a fixed population size, usually 100,000 people, within 
a specific period of time (4)

Figure 1E,G

3. Incidence ratio The incidence rate in a region divided by the average incidence rate for all of the regions Figure 1C

4. Age-standardized incidence 
rate (per 100,000)

The weighted mean of the age-specific incidence rates; the weights are taken from 
population distribution of the standard population. The most frequently used standard 
population is the World Standard Population (4)

Figure 1B

4. Age-SIR The ratio of the observed Age-Standardized Incidence Rate, to the expected number of 
cases. Having adjusted for differences in population and differences in age structure of 
the population within each area (5)

Figure 1F

5. Age-standardized relative risk The relative risks represent the risk of an area (ward) relative to average risk, adjusted for 
age, deprivation and chance fluctuations due to small numbers (6)

Figure 1A,D

Each measure is given along with a description and the Atlases in Figure 1 that display each measure. SIR, standardized incidence ratio.
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data becomes more sparse, either by increasing geographic 
resolution or stratifying by age/sex. Many atlases analyzing 
smaller areas such as the Australian Cancer Atlas (8), use 
statistical modelling to produce estimates, although some 
continue to use simple calculations and suppress regions 
where estimates are unstable.

Visualization approaches

Traditional approaches for cancer map displays

A choropleth map is the common display to visualize and 
communicate geospatial cancer statistics over geographic 
domain. Choropleth maps are a type of thematic map 
that show polygons for each of the groups of data points 
representing the geographic units, where each polygon is 
shaded with a color according to the area-specific values of 
the statistic being conveyed. Visualizing this data is helpful 
as geographic patterns of disease may be obscured when 
reported in a table (9). Providing a visual representation of 
cancer outcomes allows identification of geographic patterns 
of the disease that can then be addressed with public health 
policy and actions. The spatial distribution of the disease 
incidence can be examined using a choropleth map display 
and may reveal a trend in longitude or latitude, or rural 
vs. urban, or coastal vs. inland, or even specific hot spots 
of the disease. One of the key challenges with mapping 
spatial patterns of disease is the design of visualizations (3). 
It is important to consider the strengths and weaknesses 
of designs, as visualizing diseases on maps is often the first 
step in exploratory spatial data analysis and helps in the 
formulation of hypotheses.

A choropleth map displays the geographical distribution 
of data over a set of spatial units by shading areas of 
a map (10,11). Faithful rendering of the geography, 
when combined with an appropriate color scheme, can 
reveal spatial patterns among data values. Identifying 
and explaining spatial structures, patterns, and processes 
involve considering the individuals and organizing them 
into representable units of communities (9). Early versions 
of choropleth maps used symbols or patterns instead of 
color. Choropleth maps can be used for displaying disease 
data (12), including cancer data (13). In epidemiology, 
choropleth maps are often used as a tool to study the spatial 
distribution of cancer incidence and mortality.

Displaying familiar state boundaries can make a map 
easier to read (14) and allow viewers to infer the spatial 
relationships visually in the data using their mental model 

of the geography. The users of disease maps may include 
researchers, the public, policy makers, and the media (13). 
For these users, the familiarity of the geography is a worthy 
consideration when presenting results of spatial analysis.

Cancer maps are effective tools for communicating 
incidence, survival, and mortality to a wide range of 
audiences, including the public and others not trained in 
statistical analysis. These visualizations enable non-expert 
audiences to interpret the outputs of sophisticated statistical 
analysis. Cruickshank [1947] as cited by S. D. Walter (12), 
discusses using visuals as a ‘formal statistical assessment of 
the spatial pattern’. Overwhelmingly, choropleth maps are 
visualizations chosen to communicate cancer statistics to 
members of the public and other non-expert audiences.

A review of modern cancer atlases (15) identified 
33 cancer atlases published between 2010 and 2016. 
Atlases published between 2016 and 2018 have also been 
considered. Each of these online atlases uses choropleth 
maps. All except one of these were published by non-
commercial organizations, including not-for-profits, 
government, research organizations, advocacy groups 
or government-funded partnerships. Figure 1 displays a 
subset of maps from these atlases, the selection varies in the 
geographies explored. Figure 1B shows Globocan 2018 (4) 
which explores estimated cancer incidence, mortality and 
prevalence worldwide using estimates based on available 
country cancer registries. Most atlases allow users to view 
sex-specific distributions.

There is large variation in the resolution of the maps. 
Figure 1B shows global information at a national level. The 
United States Cancer Statistics (18) shows data aggregated 
at the state level (n=51). The Environment and Health Atlas 
of England and Wales (6) (Figure 1A) shows the relative 
risk for women developing lung cancer at a neighborhood 
(small-area) scale (n=8,850). The Australian Cancer Atlas 
(Figure 1F) shows the relative incidence ratio of lung cancer 
in males for each Statistical Area at Level 2 (19) (n=2,292). 
The Atlas of Cancer in Queensland (Figure 1C) shows 
a subset of the Australian Statistical Local Areas (SLAs) 
located in the state of Queensland within Australia (16) 
(n=478).

Age-specific atlases are less common. Figure 1G displays 
Atlas of Childhood Cancer in Ontario, this communicates 
the incidence rate of childhood cancers per 100,000 (by 
census division) for children aged 0–14, in Ontario from 
1995 to 2004 (15).

Australia presents an extreme case of an urban rural 
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divide. The land mass occupied by urban electoral districts 
is only 10% of Australia, yet 90% of the population live in 
these urban areas (20). Choropleth maps provide a familiar 
display, that shows data in a geographically recognizable 
way. A disadvantage is that the different population and 
geographical sizes of administrative areas can attract attention 
to the shades of the underpopulated but large areas (10).  
Skowronnek (11) also discusses how choropleth maps suffer 
from area-size bias, as they give a ‘stronger visual weight’ to 
large administrative units. The administrative boundaries 

used to define regions may limit a choropleth display, as this 
display unfaithfully represents the disease distribution across 
the region by obscuring small geographic areas. Sparsely 
populated rural areas are emphasized, whereas the areas 
representing inner city communities are very small. This is 
especially true for Australia.

Choropleth maps color each geographic unit to allow 
map users to measure the value of the statistic (10). Map 
users contrast the colors in neighboring areas to understand 
the spatial distribution. Pickle’s (21) suggestions for 

Figure 1 A selection of choropleth cancer maps from online atlases that are publicly available. These include: the Environment and Health 
Atlas of England and Wales (A), Globocan 2018: Estimated Cancer Incidence, Mortality and Prevalence Worldwide (B), Atlas of Cancer in 
Queensland (C), Map of Cancer Mortality Rates in Spain (D), United States Cancer Statistics: An Interactive Cancer Statistics Website (E), 
The Australian Cancer Atlas (F), and the Atlas of Childhood Cancer in Ontario (G). These atlases are described in Table 2.

A B C

D
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E
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choropleth map displays include directions to categorize the 
statistic presented on the map according to percentiles. A 
color scheme that communicates high and low rates can be 
useful in displays of cancer statistics, using a double ended 
color scheme such as those provided by the ColorBrewer 
system (22) and viridis (23) palettes provide effective color 
schemes for qualitative, sequential and diverging data. 
When communicating information using color, a map 
creator should use a scheme with perceptually uniform color 
spaces that match equal steps in data space with equal steps 
in the color space (24). It is possible to allow for data to 
progress uniformly in both positive and negative directions 
from a mid-point, such as the mean of the data. These 
diverging color schemes pair two sequential schemes that 
use a common light color at the mid-point, each sequential 
scheme progresses to a dark hue at the extreme value in 
each direction (25), it preferable that the scheme use darker 
or warmer colors for higher cancer rates (21). A linear 
color gradient is appropriate for incidence counts and rates. 
The linear gradient can also be transformed using the log 
scale, to show appropriate colors for ratio measures. The 
Australian Cancer Atlas example in Figure 1F implements 
dark red for areas with a standardized incidence ratio (SIR) 
value with a risk level more than 50% (e.g., SIR =1.5) above 

the Australian average. Areas were colored dark blue if 
they had an SIR value below the inverse of the risk value 
specified (e.g., ~0.67). The use of borders and backgrounds, 
and their colors, can also change the appearance of the 
colors representing the value of the statistics (22). These 
supports can be used to implement a reference point in 
the color scheme as well as orient users to the geographic 
regions.

Contemporary alternatives to choropleth maps

Cartograms
Choropleth maps imply uniformity of data across the 
geographic space but population densities are unlikely to 
be uniform (11). Cartographers developed the cartogram 
to draw the attention to the population by transforming 
the map (26). The resulting display can communicate the 
impact of the disease more accurately across the population, 
as recorded by the statistic, at the sacrifice of geographic 
accuracy.

Cartograms provide an alternative visualization method 
for statistical and geographical information. Monmonier (27) 
suggests that map creators can use white lies to create useful 
spatial displays. An area cartogram (28), or population-

Table 2 A selection of choropleth cancer maps from online atlases displayed in Figure 1

Figure Atlas Data Statistic Source

Figure 1A The Environment and Health Atlas 
of England and Wales (6)

Sex: women; year: 2010; 
cancer: lung

Relative risk Office for National Statistics 
(ONS) (England) and from the 
Welsh Cancer Intelligence and 
Surveillance Unit (WCISU)

Figure 1B Globocan 2018: Estimated 
Cancer Incidence, Mortality and 
Prevalence Worldwide (4)

Sex: both; year: 2018; 
cancer: all invasive

Age standardized 
incidence rates (per 
100,000)

World Health Organization’s 
International Agency for 
Research on Cancer

Figure 1C Atlas of Cancer in Queensland (16) Sex: males; year: 1998–
2007; cancer: lung

Relative incidence ratio Queensland Cancer Registry

Figure 1D Map of Cancer Mortality Rates in 
Spain (17)

Sex: males; year: 1975–
2017; cancer: lung

Age Standardized Rate  Map of cancer mortality rates in 
Spain

Figure 1E United States Cancer Statistics: 
An Interactive Cancer Statistics 
Website (18)

Sex: both; year: 2016; 
cancer: all types

Incidence rate per 
100,000

With data from state cancer 
registries: Centers for Disease 
Control and Prevention

Figure 1F Australian Cancer Atlas (8) Sex: males; year: 2010–
2014; cancer: lung

Average standardized 
incidence rate

Australian Cancer Atlas

Figure 1G Atlas of Childhood Cancer in 
Ontario (15)

Sex: both; year: 1995–
2004; cancer: all types

Incidence rate per 100,00  The Pediatric Oncology 
Group of Ontario Networked 
Information System
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by-area cartogram (29) is produced from the distortion 
of the geographical shape according to population. Event 
cartograms (30) change the area of regions on a map 
depending on the amount of disease-related events, rather 
than population. It is easy for the reader to disregard the 
impact of transformations used to create cartograms, for 
the benefit of reading the statistical distribution more 
accurately with approximate geographic information. The 
spatial transformation of map regions relative to the data 
emphasizes the data distribution instead of land size (31). 
When visualizing population statistics, Dorling considers 
this design ‘more socially just’ (20), or honest (32), giving 
equitable representation and attention to all members of 
the population and reducing the visual impact of large areas 
with small populations (12). Howe (7) suggests that ‘cancer 
occurs in people, not in geographical areas’ and that spatial 
socio-economic data, like cancer rates, are best presented 
on a cartogram for urban areas as the population map base 
avoids allocating ‘undue prominence’ to rural areas (33).

The creation of cartograms was historically in the 
hands of professional cartographers (34). Early approaches 
include Hunter and Young’s (35) wooden tile methods, 
Skoda and Robertson’s (36) steel ball-bearing approach and  
Tobler’s (37) computer programs. Howe (7) discusses 
the impact of electronic computer-assisted techniques. 
Geographical information systems allow map creators to 
produce cartograms and they use these systems depending 
on ‘the effectiveness, efficiency, and satisfaction of the map 
products’ (34).

The intended audience and the communication purpose 
are important to consider when creating alternative map 
displays. Nusrat and Kobourov (38) provided a framework 
to investigate implementations of the many algorithms 
presented, and the “statistical accuracy, geographical accuracy, 
and topological accuracy”. The alternative map displays in 
Figure 2A,B,C are created by resizing and reshaping the 
states of the USA to match the 2015 population of the state. 
This provides a better sense of the extent of disease relative 
to the population in the country and can help prevent 
overlooking the impact of the disease within physically 
small but population-dense states. Map creators give each 
state equal size and thus equal emphasis in Figure 2D the 
hexagon tile map.

Figure 2 shows four different cartograms for the average 
age-adjusted rate of incidence for lung and bronchus for 
females and males in the United States 2012–2016. Each 
cartogram highlights different aspects of the population and 

relation to the average age-adjusted rate of incidence.
In the contiguous cartogram map (Figure 2A) the state 

of California has become much larger because of the large 
population density. This draws attention to the densely 
populated North-East region and detracts from the less 
populated Mid-West.

In the non-contiguous (Figure 2B) the state of California 
has remained closer to its original size than its surrounding 
states. The North-East states have remained closer to their 
geographical size, for Massachusetts and Connecticut. This 
draws attention to the densely populated North-East region 
and the sparse Mid-West.

In the Dorling cartogram (Figure 2C) the North-East 
states remain closer to their neighbors and are slightly 
displaced from their geographic location. It highlights the 
sparsity of the population in the Mid-West by the distance 
between the circles at the geographic centroids.

In the Hexagon Tile Map (Figure 2D) it is simple to 
contrast the neighboring states however the North-East 
regions have been displaced from their geographic location. 
It highlights the sparsity of the population in the Mid-West 
by the light-yellow color, the age-adjusted rate in Kentucky 
is the darkest and its neighbors are similar.

Contiguous
A contiguous cartogram alters the choropleth according to 
a statistic and maintains connectivity of the map regions. 
Ouyang and Revesz (8) present three algorithms for 
creating value-by-area cartograms. They implement ‘map 
deformation’ to account for the value assigned to each 
area. Other methods include Tobler’s Pseudo-Cartogram 
Method, Dorling’s Cellular Automaton Method (20), Radial 
Expansion Method, Rubber Sheet Method, Line Integral 
Method, Constraint-Based Method (31).

Figure 2A shows a population contiguous cartogram of 
the United States. All states are visible and the shape of the 
United States overall is still recognizable.

To be able to recognize the significant changes, a reader 
will usually have to know the initial geography to find the 
differences in the new cartogram layout (28). The shapes 
of small areas on a choropleth map and a cartogram are 
preserved using Tobler’s Conformal mapping method. 
Kocmoud and House (31) present this issue as conflicting 
tasks or aims, to adjust region sizes and retain region shapes.

Non-contiguous
Non-contiguous cartograms prioritize the shapes of the 
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areas instead of connectivity. Each area stays in a similar 
position to its location on a choropleth map. Displaying the 
choropleth map base allows map users to make comparisons 
regarding the change in the area. The addition is the 
gap between areas, created as each area shrinks or grows 
according to the associated value of the statistic. Olson (28) 
discusses the creation of these maps and the significance of 
the empty areas left between the geographic boundaries and 
the new shape. The white space presents the meaningful 
empty-space property (39,40).

Dorling
Daniel Dorling presents an alternative display engineered 
to highlight the spatial distribution and neighborhood 
relationships without complex distortions of borders and 
boundaries (20): “If, for instance, it is desirable that areas on 

a map have boundaries which are as simple as possible, why not 
draw the areas as simple shapes in the first place?”.

He acknowledged the sophistication of contiguous 
cartograms but critiqued their ‘very complex shapes’, he 
answered this with his implementation of maps created 
using ‘the simplest of all shapes’. Circular cartograms use 
the same circle shape for every region represented, resized 
according to the statistic represented or the population. 
This simple shape may be more effective for understanding 
the spatial distribution than contiguous cartograms. 
Contiguous cartograms create ‘nonsense’ shapes that have 
‘no meaning’ (32). Both methods apply a gravity model 
to produce a layout, that avoids overlaps and keep spatial 
relationships with neighboring areas over many iterations. 
The circular cartogram is relatively fast to compute.

Raisz (41) laid the groundwork for this approach in the 

Figure 2 Common alternatives to maps, showing the same information for the United States of America. The color of each state 
communicates the average age-adjusted rate of incidence for lung and bronchus for females and males in the United States 2012–2016: (A) 
contiguous cartogram distorted each state’s shape by the population of the state in 2015, (B) non-contiguous cartogram preserves the shape 
of the cartogram, but the size now reflects the population of the state in 2015, (C) Dorling cartogram are non-contiguous, circles are used 
to represent each state and the population of the state determines the size in 2015, (D) hexagon tile map (non-contiguous) uses a hexagon of 
equal size for each state, and colors the state by the average age-adjusted rate of incidence.

30 40 50 60 70 80 90

Age adjusted rate 
(per 100,000)

A B

C D
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mid-1930s, drawing rectangular cartograms that provide 
simple comparisons, effective for correcting misconceptions 
communicated by geographic maps. Tobler (42) names and 
defines these as Value-Area Cartograms. This rectangular 
display may sacrifice contiguity but allows for tiling 
where geographic neighbors placed in suitable relative 
positions also share borders (43). Rectangular cartograms 
communicate bivariate displays of the population by the 
size of each rectangle, and they use color to communicate a 
second variable (44).

Tile map
A tile map provides a tessellated display of consistent shapes. 
A similar method to a rectangular cartogram, representing 
each geographic area using a square. The squares are 
tessellated to create a grid as shown in Figure 3A. Each area 
is represented by a square of the same dimensions, each tile 
is usually one unit of measurement, this could be geographic 
regions such as states or population-based that use a 
consistent measure of population for each tile. Regions with 
over four neighbors require some necessary displacement. 
The tile map uses color to represent a value of a statistic 
for each area. A similar method to a rectangular cartogram 
represents each geographic area using a square of the same 
dimensions. There are online media sources that use this 

method (45-48). Tile maps may be difficult to create as they 
are best created manually, they require additional time and 
care as the number of geographic areas to include increases.

Cano and others  (49)  def ine the term ‘mosaic 
cartograms’ for hexagonal tile displays, where the number 
of tiles for each area or the color of them can communicate 
the statistic of regions. When using several tiles per region, 
map makers can adjust the complexity of the boundaries 
in the resulting display. They can also make a trade-off 
between boundary complexity and simplicity by the size of 
the tiles used.

Geofacet
Hafen (50) introduces the term geofacet to describe a grid 
display of small plots. The arrangement of tiles in Figure 3B  
mimics the geographic topology. Geofaceting has the 
functionality that a statistical plot can be constructed in each 
facet for each geographic area. A tile map can communicate 
only one value per region in a visualization, while geofaceting 
is a more flexible visualization for communication as it 
increases the amount of information displayed. Virtually any 
type of plot can be shown in the tile, allowing displays of 
multiple variables or values per geographic entity. Creating 
the layout of a geofacet is manual, but once created can be 
used for any data on that geographic base.

Figure 3 Two alternative displays, tile map (A) and geofaceted map (B), showing state age-adjusted rate of incidence for lung and bronchus 
in the USA. In the tile map, the layout approximates spatial location, with each state being an equal box filled with color representing cancer 
incidence. The geo-faceted map shows bar charts laid out in a grid approximating the spatial location of the state. The maps show age-
adjusted rates for males and females. This display allows the presentation of multiple variables for each geographic area.

A B
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Multivariate displays
Pickle and others (51) present linked micromap plots to 
match geographic and statistical data visually, this serves 
as a solution to multi-dimensionality issues. These maps 
group areas based on their value for one variable, and 
additional columns provide displays that contrast the areas 
in each group by other variables. The display juxtaposes 
choropleth maps and statistical plots; it shows one map per 
group of the key separating variable, in a row with each 
additional statistical plot. Linked micromaps predominantly 
use the choropleth map for displays of spatial relationships. 
These maps show spatial relationships by allotting spatial 
neighbors to the same group. It is one of several alternative 
displays that allow maps to become bivariate displays, 
commonly used to present both an estimate and the 
associated uncertainty.

Lucchesi and Wikle (52) present bivariate choropleth 
maps blend color schemes to convey the intersection 
of categorized levels of an estimate and the associated 
uncertainty for each spatial area. They also suggest map 
pixilation, which breaks each region into small pixels, and 
allocates values to the individual pixels to create texture. 
This reflects the uncertainty around the area’s estimate 
by randomly sampling from the confidence interval of the 
estimate of the area. Animating these displays involves 
resampling the pixels for each frame. Areas with uncertain 
values will flicker more dramatically than areas with more 
certain values.

Comparison and critique of alternative displays

Performance of cartograms for Australia

Figure 4 shows four main types of cartograms using 
melanoma incidence on Australian Statistical Areas at Level 
3 (53). The version of a contiguous cartogram (Figure 4A) 
has expanded the highly populated areas while preserving 
the full shapes of rural areas. The South-East is enlarged, 
but high population areas are still small, and low population 
areas are still large on the map. It has not fully resolved the 
population transformation of areas, because the algorithm 
can’t reach an optimal configuration where area matches 
population—Australia is too heterogeneous. The shape-
preserved cartogram is unreadable, and it has reduced all 
areas to tiny spots on the map. Zooming in on a high-
resolution output shows it does preserve the shapes. The 
Dorling cartogram and the hexagon tile map provide 

reasonable displays of the spatial distribution, despite having 
a very large amount of white space in the outback areas.

Limitations of alternative displays

Cartograms provide the spatial distortion to more 
accurately convey the statistical distribution, focusing on the 
human impact of the disease. However, the transformation 
of contiguous cartograms often occurs at the expense of 
the shape of areas (31). When the population density of 
the geographic units is highly dissonant with geographic 
density, the cartogram will lose all spatial context.  
Dorling (20) contains a cartogram showing the 1966 general 
election results for Australia, produced by Hughes and 
Savage (54), which looked very little like the geographical 
shape of Australia. The reader is encouraged to access the 
freely available pdf of Dorling’s book, and this image can be 
found on page 41.

The most common aesthetics employed in alternative 
map displays are shape, color and size. Each alternative 
display allows for some combination of these. Color is used 
most often to represent the variable of interest. The size 
and shape are often used to scale the areas to draw attention 
to regions of interest.

Some mix of tiling, faceting or even micromaps, which 
allow some spatial continuity while also zooming into small 
areas, are good solutions for difficult geographies. Bell  
et al. (13) provide suggestions and comments to help map 
creators best communicate their health data and spatial 
analysis. The authors highlighted that the map design 
chosen should be tested on a representative sample of 
potential consumers, to ensure that the target audience is 
not misinformed by the display. The authors encourage the 
consideration of map types beyond the traditional classed 
choropleth map, but warn that sound cartographic principles 
must be employed to ensure effective communication 
to the public. A clear definition of the purpose of the 
display can help map creators to select the design that best 
communicates the statistic of interest (13). Table 3 lists 
several features, or limitations, of each alternative display 
in contrast to the commonly used choropleth map. The 
desirable features of each display can be contrasted within 
the table, this can be used to help inform the choice of 
map creators as they consider each alternative display. Map 
creators should choose a display that best communicates the 
statistic according to the purpose of their display.
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Additional considerations

Cancer atlases often display supplementary graphs and 
plots to add more information. Additional materials such as 
tables, graphs, and text explanations support understanding 
and inference derived from maps, ensuring the message 
communicated will be consistent across a range of  

viewers (13). The many displays of statistical summaries, 
including dot plots, bar plots, box plots, cumulative 
distribution plots, scatter plots, and normal probability 
plots, can provide alternative views of the cancer statistics. 
These can also display supporting statistics such as error, 
confidence intervals, distributions, sample or population 

25 50 75  100 125

Age-standardised 
rate (per 100,000)

A B

C D

Figure 4 Cartograms showing melanoma incidence in Australia: (A) contiguous, partially population transformed, (B) non-contiguous shape 
preserved, (C) Dorling, (D) hexagon tile map. The contiguous cartogram has expanded the highly populated areas while preserving the full 
shapes of rural areas. If it accurately sized areas by population, the country would be unrecognizable. The shape-preserved is unreadable 
due to the small area sizes. The Dorling cartogram presents all areas but many are difficult to compare. The hexagon tile map provides a 
reasonable spatial distribution despite having isolated hexagons in the outback areas.
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sizes, and standard deviation.
The statistics communicated in atlases are often used 

to describe differences between areas. This can occur 
at different levels of aggregation. Aggregation of global 
health statistics occurs within administrative and arbitrarily 
defined regions, such as those used by the World Health 
Organization and the United Nations (55). World atlases 
can allow for displays of data aggregated into continents, 
countries, states, provinces and congressional districts (18). 
Each population area will probably have a different number 
of people, which is typically used to calibrate the statistic. 
Cancer atlases may also communicate the distribution of 
the population living in all areas in a table or histogram 
display (56). Atlases can connect the population to the land 
available to them by communicating population density.

Maps can also be used to focus on demographic strata, 
such as age and sex. Some of the digital atlases surveyed 
allow subsets to be selected for display, for example the 
Australian Cancer Atlas (8) allows filtering for the selection 
of statistics regarding males and females specifically.

Introducing population and demographic information 
helps to interpret the rates in areas effectively, but there 
will still be uncertainty around the rates. To address this, 
a cancer atlas often communicates uncertainty about the 
value of a statistic. There are several potential sources of 
uncertainty: sampling error, errors arising from the disease 
reporting or data collection processes, and uncertainty 
arising from the statistical modelling or simulation process. 
The most common measures used to present uncertainty 
are credible intervals or confidence intervals. Displaying 
the uncertainty associated with reported statistics is a 
vital feature of a cancer map, but it is difficult to display 
effectively, the Australian Cancer Atlas (8) uses transparency 
to communicate uncertainty. Providing an adjacent map 

or overlaying maps with symbols (30) are two common 
solutions.

User interaction

One of the concerns of adding too much information to 
a map is the fear of cognitive overload (57) in which the 
user reaches an information threshold, beyond which they 
become confused. It can be a juggling act for a diverse 
audience, with experts probably preferring more detail (58)  
while a simpler display is more broadly readable. 
Interactivity is a design feature within modern mapping 
methods that can be used to incorporate additional 
information and complexity without overloading the user. 
Effective user-centered interactive actions produce rapid, 
incremental, and reversible changes to the display (59).

Monmonier (27) recommends using interactivity to allow 
users to explore the map for more information and provide 
flexibility for the display. The user can toggle between 
different variables, map views or even multiple realizations 
of future scenarios (60).  This provides additional 
mechanisms for the users to digest the uncertainty of the 
available information (61,62). When the needs of the 
audience are changeable and are also the priority, the map 
creator can allow interactivity for map users to explore a data 
set through dynamic interactions. This can allow inspection 
of the data from many views (63). User interaction 
with maps helps to understand and interpret the spatial 
distribution of disease, to validate, explain or explore the  
presented statistics and their relationships to each other (64).

Interactivity enables supplementary information to be 
incorporated into online atlases without cluttering the 
display. Interactive design features, found in online cancer 
maps, include tool tips, drop-down menus, data selection, 

Table 3 Summary of features and constraints of common mapping methods used to display cancer statistics

Features Choropleth Contiguous Non-contig Dorling Tile maps Geofacets

Spatial distortion No Yes Yes Yes Yes Yes

Preserves neighbors Yes Yes Yes Possible Possible Possible

Conceals small areas Yes Possible No No No No

Uniform shapes No No No Yes Yes Yes

Univariate data Yes Yes Yes Possible Possible No

Manual construction No No No No Yes Yes

“Yes” indicates the characteristic is always used, “No” indicates never used, and “Possible” it may be employed, but it is not necessary.

ref-HTLWM
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zooming, and panning to allow users to explore the map 
as they want more information and allow flexibility in the 
display (27). The use of these supports can be found in 
various online cancer maps and are shown in Figure 5 (39).

Animation, in contrast to interactivity, usually involves 
pre-computing views and showing these in a sequence. 
Lin Pedersen (65) provides an overview of animation for 
maps using the R package gganimate (66). Animations are 
used to communicate a message by capturing and directing 
users’ attention. It is most often employed to show changes 
over time. The controls for basic animation are usually 
placed outside of the plot space (65), and the map image is 
updated/replaced as the animation progresses.

Weather maps are thoroughly developed examples of 
animation of spatial displays to communicate information to 
the general public (13). The movement of a weather system 
will follow a forecasted path. All map users can follow the 
animated path of the weather system across the geography 
over a specified period.

The Australian Cancer Atlas (67) provides tours that 
change the display to draw users’ attention to areas on the 
map that are relevant to the interpretation of the statistic 
displayed. This implementation of animation gives users 
tools to plan their exploration.

Figure 6 shows two examples of more sophisticated 
interactive maps. The Spanish Cancer map (Figure 6A) 

Figure 5 Interactive controls of displays in publicly available choropleth cancer maps: (A) GUI controls for statistic, sex, age groups, 
continents, and cancer types for Globocan 2018 (4), (B) menus for variable selection and zooming on Bowel Cancer Australia Atlas, (C) 
menus for choosing variables and countries in The Cancer Atlas, (D) tabs for different indicators and cancer types in Global Cancer Map, (E) 
menus and toggles for variable and subset selection in United States Cancer Statistics: Data Visualizations.

A

E

B

C

D

https://atlas.cancer.org.au/app/tour/lungcancer
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contains a linked display between a choropleth map and 
time series plots of cancer change. In linked plots, changing 
values in one display will trigger changes of corresponding 
elements in another display. Here, the temporal change 
in the choropleth map can be played out as an animation. 
Mousing over the time series plots will highlight the line for 
a particular region. The Canadian Breast Cancer Mortality 
map (Figure 6B) has a magnifying glass that allows the user 
to zoom into small areas. It is easy to control and shows 
precise details in small areas.

Conclusions

This paper provides an overview of mapping practices 
as commonly used for cancer atlases. The conventional 
approach is the choropleth map, and it is widely used. The 
choropleth map suffers when there are small geographic 
units, as occurs in Australia. The population of Australia is 
concentrated in small areas on the coast, and a choropleth 
map can hide information about the burden of cancer on 

those communities. Making an inset can clarify congested 
regions but this breaks the viewers’ attention as they shift 
focus from the map to the inset, and if there are many 
congested areas, many insets would be needed. The map 
alternatives implement trade-offs between the familiar 
shapes, and the importance of the geographic areas. Given 
the population or a cancer statistic for each area, the 
geographic size or shape will change. Alternative displays 
allow the spatial distribution of cancer data to be digested 
by map users.

Additional mapping methods should be considered 
by map creators during the development of a cancer 
atlas, as alternative displays may align better with the 
communication purpose. Other considerations need to 
be taken into account, including audience, budget, time, 
maintenance. Of primary importance is that information 
about cancer statistics be effectively communicated to the 
public. The choropleth has an advantage in that it is more 
familiar in form for more people, but we have seen that it 
can give an incorrect perception of the information. Public 

Figure 6 Two examples of advanced interactivity (and animation) in publicly available choropleth cancer maps: (A) linked maps and time-
series line plots, with temporal animation in Map of Cancer Mortality Rates in Spain; (B) a highly responsive magnifying glass on a map of 
Breast Cancer Mortality in Canada.

A B
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atlases can be useful educational tools. A combination of the 
choropleth alongside an alternative display, could provide 
a balance of the familiar along with a perceptually accurate 
display, and provide an opportunity to educate the reader. 
This is especially recommended for Australia, because of the 
vast difference between spatial area and population density.

Many statistics are commonly used in cancer displays. It 
is common to see incidence rates, or ratios which displays 
how far a region is above or below the average. The 
purpose of using an age standardized ratio is, perhaps the 
desire to pinpoint the areas that need attention because 
they have higher than expected rates. Ratios may negatively 
impact the interpretability of the actual rates of incidence 
or mortality. However, this impact is offset by the value of 
seeing the relativity of the values in reference to the mean, 
especially when the mean value is also given on the display. 
This helps to put individual areas in perspective, as a region 
might have a value higher than the average, but it may not 
be a health concern if all regions have a low incidence rate. 
Supplementary materials such as displaying the mean, or 
a distribution plot, can allow map users to recognise when 
this occurs.

Interaction with maps is an important component of 
public atlases, and is becoming increasingly straightforward 
to add with today’s technology. The purpose of interaction 
in public atlases is to provide access to more information 
than is possible to display in a single map, without 
overwhelming the viewer. Too many choices can similarly 
overwhelm a viewer, and thus decisions do need to be made 
about content to provide for accurate and comprehensive 
communication of information. Similarly, providing 
ways for users to interact with the display encourages 
engagement, and creative, efficient, elegant, interactive 
tools elicit curiosity about the data.

Software used

The following R (68) packages were used to produce this paper: 
tidyverse (69), RColorBrewer (70), ggthemes (71), png (72), 
cowplot (73), sf (74), spData (75), cartogram (76), sugarbag (77),  
knitr (78), rmarkdown (79) and absmapsdata (80). Files to 
reproduce the paper, and code to reproduce the plots, are 
available at https://github.com/srkobakian/review.
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