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Introduction

Cancer is the second leading cause of death, not only in the 
United States but also worldwide (1,2). Globally, stomach 
and liver cancers are listed in the most common causes of 
cancer death (2). In the United States, 35% of the patients 

who are diagnosed will die from the disease (3). According 
to the estimates by National Institutes of Health (NIH), 
in the year 2018, the incidence (the number of new cases) 
of stomach and liver cancers exceeded 26,000 and 42,000, 
respectively, while more than 10,000 and 30,000 patients 
died from stomach and liver cancers, respectively.
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California, located in the west coastal region of the 
United States, is the largest state by population in the 
United States. It has had the highest rates of new stomach 
and liver cancers in the country since 1999 and 2004, 
respectively (1).

We explored impact of ecological risk factors associated 
with each cancer, including 1,2,3-trichloropropane (TCP) 
in drinking water, poverty, rurality, gender, and race (4-6). 
All variables above were measured at county level among 
58 counties in California. Due to its intense agricultural use 
of the land and relaxed prior regulation on the releases of 
chemicals in the water aquifers, many California counties 
have been detected to have elevated levels of potent 
carcinogens in its wells and public water systems (7,8). One 
of the most toxic chemicals found was TCP, which, based 
on animal studies, has been shown to be associated with 
stomach, liver and other cancers in rats (9). No studies 
have discussed the association between stomach and liver 
cancers with the variable TCP in California. Among 
the demographic factors, we estimated the relationships 
between the area-level variables of percent below poverty 
level (poverty, %), percent of rural area (rurality, %), 
percent of males (male, %), and percent of African 
Americans (AA, %) with the incidence of stomach and liver 
cancers, respectively. Spatial variations of stomach and liver 
cancers have been found in some other geographical areas, 
including Ontario province in Canada, and Shenzhen, a 
major sub-provincial city in China (10-12), however, to 
date, spatial distributions of these two cancers have not 
been explored in California.

The purpose of this study was to assess, via a Bayesian 
analysis, the spatial distributions of relative rates for stomach 
and liver cancer and the associations of these diseases with 
TCP in drinking water, along with poverty, rurality, gender, 
and race. This county level risk estimation will help identify 
regions that may need targeted interventions designed to 
reduce the disease burden.

Methods

Data

Liver and stomach cancer incidence data from the years 
2006 to 2015 were obtained from the National Cancer 
Institute Surveillance, Epidemiology, and End Results 
Program (SEER) from cancer registries in California (13).  
SEER is an authoritative source of information on cancer 
incidence and survival in the United States (14). The data 

were collected from population-based cancer registries (14).  
No obvious temporal pattern was detected in preliminary 
examination of the incidence for both cancers. As 
aggregating longitudinal data increase the capacity to detect 
spatial patterns, we included the total incidence in California 
at county level from the year 2006 to 2015 for each cancer 
separately. In order to calculate the age standardized 
incidence ratio (SIR), we considered three age groups:  
20–39, 40–59, and 60–79 years. We used California 
population data from the same years as our outcome, 
2006–2015, when calculating SIR. The population data 
were obtained from the United States Census Bureau (15). 
Also, several covariates were considered, such as percent 
of males (male), percent below poverty level (poverty), 
percent of rural area (rural), percent of African Americans 
(AA), and percent of TCP over the public health goal 
(PHG) level (TCP over the maximum allowed level) in each 
county in California. We assessed the percent of males from  
SEER (16). The percent of rural area was based on the 2010 
census (17). The percent below poverty level and percent of 
African Americans was obtained from 2011–2015 American 
Community Survey 5-Year Estimates (15). The TCP test 
data through 2006–2018 was obtained from the drinking 
water programs of the California water boards which 
maintains the drinking water’s quality analyses database (18). 
Only the active public water system and wells test results 
were included in our analysis. We used the allowed cutoff-
PHG for TCP the cutoff (19). The percent of the allowed 
TCP was calculated as the percentage of test results in each 
county beyond established PHG cutoff of 0.0007 µg/L.

Statistical methods

Bayesian approaches offer natural  framework for 
epidemiological studies, where the spatial distribution and 
determinants relating to health need to be considered (20). 
Due to the rapid development of computing, Bayesian 
approaches are now widely used. To reach the goal of 
disease mapping, spatial models which account for the 
spatial correlation between adjacent regions using random 
effects can be considered in the process of making inference. 
The random effects, including unstructured heterogeneity 
(UH) and structured heterogeneity (CH), can capture 
the spatial correlation not explained by the covariates. To 
capture the spatial correlated heterogeneity, a few models 
were used, such as the conditional autoregressive (CAR) 
model (21) and Besag, York and Mollie (BYM) model (22). 
By allowing each spatial area to have a different coefficient, 
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the model can also be extended in a geographically weighted 
regression (GWR) setting.

The purpose of this study was to explore the spatial 
distribution of the relative risk of stomach cancer and liver 
cancer respectively and related socioeconomic variables 
in 58 counties of California, USA, incorporating random 
effects. A Poisson-lognormal model used to fit each cancer 
type separately is given by:
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where yi is the total number of the observed incidence of 
the stomach cancer or liver cancer considered in county i. 
θi is the relative risk and Ei is the expected incidence of the 
cancer considered in county i, which is the product of state 
incidence rate and county population (Popi). i = 1,...,n, n = 
58 is the total number of counties. α is the intercept, and α 
~ N(0,0.005−2) distribution.

βj is the coefficient for jth covariate, βj ~ N(0,0.005−2). 
The model was also extended in a geographically 
weighted regression (GWR) setting that local coefficients, 
βijrepresents the coefficient of jth covariate for ith county, 
were estimated by introducing the neighboring features. 

( )1, where 0,
iij j ij ij N nω δβ β ω ω τ −= +  ,  a n d  τ ω~  G a m m a 

(0.001,0.005). The random effect for the spatially correlated 
heterogeneity (CH), vi, was assumed to follow a CAR prior:

( )1/ ,
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Where δi represents the neighbor set in the ith county, i
nδ  

represents the number of neighbors in the ith county and τv 

is a hyperparameter, where τv ~ Gamma (0.001,0.005). ui is 
the random effect for the uncorrelated spatial heterogeneity 
(UH), ( )10,i uu N τ −∼ , where τu ~ Gamma (0.001,0.005). 
Separate models were fit for each type of cancer.

We performed sensitivity analyses and the results are 
robust for different specifications of the prior distribution 
parameters, for example Gamma (0.001,0.001) and Gamma 
(1,1) for τv and τu, respectively.

Model selection

To measure the predictive accuracy of the fitted models, 
we considered the Watanabe Akaike information criterion 

(WAIC) (23). WAIC is a fully Bayesian measurement (24)  
for estimating the out-of-sample expectation (25). The 
computation of WAIC starts with the computed log 
pointwise predictive density and then subtracts a correction 
for the numbers of effective parameters (26). The 
parameters degrees of freedom indicate the complexity 
of the model. As the deviance information criteria (DIC) 
is widely used in recent years, it was also included in the 
results for the purpose of comparison. A lower WAIC/DIC 
value indicates a better goodness-of-fit.

Computational approach and software

Integrated nested Laplace approximation (INLA) is a 
Bayesian inference approach proposed by Rue et al. (27) 
in latent Gaussian models via Laplace approximation. 
As an alternative of the traditional Bayesian analysis 
approach which uses Markov chain Monte Carlo (MCMC 
algorithms), INLA gains a much higher computation 
speed and accurate estimates (28). R-INLA is an ongoing 
development R package which provides a user-friendly 
interface, allowing users to perform inference based on the 
INLA method (29) through R command. Data preparation 
work was performed by using SAS version 9.4 (SAS Institute 
Inc., Cary, NC, USA) and R software (30). The Bayesian 
analysis was implemented by the R-INLA R package. The 
graphical displays were using the R software (30).

Results

The Figure 1A-1E presents the spatial variation of the 
variables considered in California, including for TCP 
(range: 1–100%), percent of male (range: 47–68%), percent 
of poverty (range: 2–23%), percent of rurality (range: 
0–45%), and percent of African American (range: 0–14%). 
The spatial variations of these variables look different 
to each other according to the maps. The Figure 2A,2B 
present the raw log SIR of the stomach and liver cancers 
respectively. The darker shades in the maps indicate higher 
SIR. The ranges of log SIR for stomach and liver cancer 
are (−∝, 0.51] and [−1.11, 0.23], respectively. For the SIR 
of stomach cancer, the SIR for 20 out of 58 counties was 
over 0, while for liver cancer it was 9 out of 58 counties. 
The counties with higher risk are located in the midwestern 
regions of the state for liver cancer.

Tables 1,2 include the measurements of goodness-of-fit 
for stomach and liver cancers, respectively. Models 1(a) and 
(b), 4(a) and (b), and 9(a) and (b) are the models without 
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random effect. The remaining models were based on the 
spatial model with different random effects and covariates, 
either with or without geographically weighted regression 
(GWR). For all models with random effects, there are no 
major qualitative differences between DIC and WAIC, 
suggesting that both measurements are appropriate for 
using when comparing models. Models 1(a) and 1(b), 2(a) 
and 2(b), 3(a) and 3(b), are models with no covariates. 

Among all the models considered for stomach cancer, 
model 12(a) and model 13(a) are the two models have the 
lowest WAIC values. Due to the model complexity, we 
chose model 12(a) (percent below poverty level, percent 
of rural area, and percent of the allowed TCP, UH + CH 
effects, without GWR) as the best model. For the same 
reason, among all the models considered for liver cancer, 
model 10(b) (percent below poverty level, percent of rural 

Figure 1 Maps of % TCP by area characteristics (orange: above median; grey: around median; purple: below median). TCP, 
trichloropropane.
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area, percent of the allowed TCP, UH effect only, without 
GWR) was selected. For the models selected, model 12(a) 
for stomach cancer and model 10(b) for liver cancer, the 
DIC and WAICs are both smaller than model 2(a) and 
(b), and model 3(a) and (b), which are the models without 
covariates, but with UH or UH+CH random effects.

Tables 3,4 include the posterior results for the parameter 
estimates of model 12(a) and model 10(b). For both 
stomach and liver cancers, the percent of rural area and 
percent below poverty level were significant determinants. 
Specifically, according to model 12(a), one unit increase 
of the percent of poverty increased the relative risk of 

Figure 2 Maps of SIR in logarithm scale for stomach (A) and liver (B) cancers (color in orange: above 0; color in grey: around 0; color in 
purple: below 0; color in deep grey: no event as SIR =0). SIR, standardized incidence ratio.

Table 1 Model selection for the models considered (stomach cancer)

Model Variables considered Model names WAIC WpD DIC pD

Model 1 (a) No covariates No random effect 1,225.83 113.31 1,089.63 1.12

Model 2 (a) No covariates UH 456.85 23.21 462.39 36.85

Model 3 (a) No covariates UH + CH 451.47 21.02 459.16 35.87

Model 4 (a) All covariates No random effect 901.9 101.79 778.7 6.091

Model 5 (a) All covariates UH 447.78 20.06 453.78 32.88

Model 6 (a) All covariates UH+GWR 457.66 22.29 460.7 32.75

Model 7 (a) All covariates UH + CH 447.63 19.47 452.18 30.52

Model 8 (a) All covariates UH + CH + GWR 454.38 31.92 448.518 19.56

Model 9 (a) Poverty (%) + rural (%) + TCP (%) No random effect 905.82 92.52 793.05 4.102

Model 10 (a) Poverty (%) + rural (%) + TCP (%) UH 448.43 20.11 453.82 32.28

Model 11 (a) Poverty (%) + rural (%) + TCP (%) UH + GWR 449.7 20.4 455.51 33.1

Model 12 (a) Poverty (%) + rural (%) + TCP (%) UH + CH 445.96 19.26 452.99 32.75

Model 13 (a) Poverty (%) + rural (%) +TCP (%) UH + CH + GWR 445.64 19.16 454 33.93

All covariates include 1,2,3-trichloropropane (TCP) in drinking water (%), poverty in percent (%), rurality (%), gender (%), and race (%). UH, 
uncorrelated random effects; CH, spatially correlated random effects; GWR, geographically weighted regression.
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stomach cancer by 1.3% (95% CI: 0.4−2.1%); one unit 
increase of the percent of rural area decreased the relative 
risk of stomach cancer by 0.5% (95% CI: 0.2−0.7%). And, 
according to model 10(b), one unit increase of the percent 
of poverty increased the relative risk of stomach cancer by 
1.5% (95% CI: 0.4−2.6%); one unit increase of the percent 
of rural area decreased the relative risk of stomach cancer 
by 0.2% (95% CI: 0.1−0.5%). However, we did not find any 
association between percent of the allowed TCP for either 
cancer type.

Figure 3A displays the log relative risk (uncorrelated 
and spatially correlated heterogeneity (UH + CH) random 
effects) estimated in model 12(a), and Figure 3B includes 
the log relative risk [the uncorrelated heterogeneity (UH) 
random effects] estimated in model 10(b). Both maps 
present a variability of the distribution of stomach and 
liver cancers in California. The map of liver cancer shows a 
higher variability when compared with the map of stomach 
cancer. For stomach cancer, the estimated log relative risk 
was between −0.13 and 0.27. Among them, 24 out of 58 
counties had a log relative risk greater than 0. For liver 
cancer, the estimated log relative risk ranged between −0.27 
and 0.60. Among them, 29 out of 58 counties had a log 

Table 2 Model selection for the models considered (liver cancer)

Model Variables considered Model name WAIC WpD DIC pD

Model 1 (b) No covariates No random effect 1,283.44 28.42 1,254.95 1.16

Model 2 (b) No covariates UH 490.49 25.71 499.53 43.81

Model 3 (b) No covariates UH + CH 490.15 25.13 499.32 43.08

Model 4 (b) All covariates No random effect 1,257.47 138.87 1,097.58 6.13

Model 5 (b) All covariates UH 487.13 24.92 496.78 43.35

Model 6 (b) All covariates UH + GWR 488.8 26.09 495.67 42.12

Model 7 (b) All covariates UH + CH 492.98 25.47 497.31 38.53

Model 8 (b) All covariates UH + CH + GWR 491.22 24.97 497.53 39.9

Model 9 (b) Poverty (%) + rural (%) + TCP (%) No random effect 1,354.14 125.87 1,213.09 4.14

Model 10 (b) Poverty (%) + rural (%) + TCP (%) UH 486.45 24.8 496.18 43.28

Model 11 (b) Poverty (%) + rural (%) + TCP (%) UH + GWR 488.46 26.13 495.38 42.28

Model 12 (b) Poverty (%) + rural (%) + TCP (%) UH + CH 488.35 24.84 495.92 41.06

Model 13 (b) Poverty (%) + rural (%) + TCP (%) UH + CH + GWR 487.56 24.59 496.28 41.9

All covariates include 1,2,3-trichloropropane (TCP) in drinking water (%), poverty in percent (%), rurality (%), gender (%), and race (%). UH, 
uncorrelated random effects; CH, spatially correlated random effects; GWR, geographically weighted regression.

Table 3 Coefficient estimates of the selected best model for 
stomach cancer [Model 12 (a)]

Variables
UH + CH model

Mean (std dev) 95% CI

Intercept 0.808 (0.058) 0.697–0.926*

Poverty (%) 1.013 (0.004) 1.004–1.021*

Rural (%) 0.995 (0.001) 0.993–0.998*

TCP (%) 0.984 (0.070) 0.854–1.129

*, indicates that 1 does not belong to the 95% CI.

Table 4 Coefficient estimates of the selected best model for liver 
cancer [Model 10 (b)]

Variables
UH model

Mean (std dev) 95% CI

Intercept 0.806 (0.075) 0.664–0.961*

Poverty (%) 1.015 (0.006) 1.004–1.026*

Rural (%) 0.998 (0.001) 0.995–0.999*

TCP (%) 1.108 (0.102) 0.921–1.319

*, indicates that 1 does not belong to the 95% CI.
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relative risk greater than 0. Figure 4A,4B provides the map 
of probability of log RR greater than 0 estimated by model 
12(a), and the map of the probability that the estimated 
log(RR) >0 estimated by model 10(b). The orange, grey, and 
purple colors visualize these probabilities in categories of 
greater than 0.5, around 0.5, and less than 0.5. For stomach 
cancer, a small cluster of excess risk was located in the mid-
west region. For liver cancer, the counties with higher liver 
cancer relative risk were clustered from the mid-west (Bay 
area) to northwestern region. In addition, for both stomach 
and liver cancers, the excess risk was also found in Imperial 
county located in the southmost county.

Discussion

In our spatial Bayesian analysis, models with random effects 
greatly outperformed the models without random effects. 
There was a marked spatial variation of liver cancers in 
California at the county level. Also, we have found lower 
risk for each cancer type associated with rural regions, and 
an increased risk associated with poverty. Our findings agree 
with the results from other studies. For example, in 2003, 
Horton discussed the socioeconomic factors, including 
poverty and rurality with cancers, such as stomach and liver 
cancers (31). He concluded that less developed societies 

Figure 3 Maps of random effects [estimated log(RR)] for model 12 (A) and model 10 (B) (color in orange: above 0; color in grey: around 0; 
color in purple: below 0).
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tend to have higher cancer incidence. Also, Kogevinas et al. 
in 1997 pointed out that in the lower social strata, excess 
risks were found in both stomach and liver cancers (32). In 
other studies, both cancers were found to be more common 
in males than in females (3,33). Also, among other races 
and ethnicities, the two cancers were found to be the least 
prevalent among non-Hispanic Whites (3,33). However, we 
have not found any association related to sex and ethnicities.

Limitations of our project includes the fact that the data 
used for TCP were not a random sample and instead based 
on the available tests during the time periods considered. 
The TCP data were collected based on the regular 
monitoring of drinking water chemicals by California 
water boards. Each community water system is required to 
collect four quarterly samples during the designated year 
prior to any treatment. The designated year is based on 
historical monitoring frequency and laboratory capacity 
by the state water board (34). Also, the presence of TCP 
above the allowed level does not necessarily mean the water 
was used as drinking water. Both the continuous TCP data 
and percent of the allowed TCP were considered, but no 
association result was found. Also, due to confidentiality, 
individual data was not available, and the data was 
aggregated at the county level. As a shortfall of ecological 
study, there is a loss of information due to aggregation. 
Therefore, further studies should examine the reasons 
for the association between poverty and rurality between 
stomach and liver cancers. A limitation in the modeling 
is that instead of age adjusted expected incidence, general 
expected incidence was used.

Our findings could help public health officials identify 
regions with higher cancer relative risk, and better 
understand the risk factors for these diseases, such as spatial 
location, poverty and rurality. This can help public health 
administrators more appropriately plan and target the use of 
available resources to reduce the burden in the high risk areas. 
Suggestions include motivating screening for established risk 
factors and prevention activities and increasing the public 
awareness of stomach and liver cancers in high risk areas.
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