%macro third_stage_sampling(times=);

%do lyy=1 %to ×

data c3_lyyerion;set c03_samplesize(firstobs=&lyy obs=&lyy);

run;

proc sql noprint;

select f1h1,f1h2,f2h1,f2h2,f3h1,f3h2

into :f1h1,:f1h2,:f2h1,:f2h2,:f3h1,:f3h2

from c3_lyyerion;

quit;

data xc_population;

set xc_population;

run;

data xc_population_h1 xc_population_h2;

set xc_population;

if h=1 then output xc_population_h1;

if h=2 then output xc_population_h2;

run;

```
proc sql noprint;
```

create table district_list as

select distinct district from xc_population;

quit;

proc sql noprint;

create table district_site_list as

select district, site from xc_population;

quit;

proc surveyselect data=district_list noprint

method=srs sampsize=&f1h1 out=first_stage_sampling_h1 seed=&lyy;

run;

```
proc surveyselect data=district_list noprint
```

method=srs sampsize=&f1h2 out=first_stage_sampling_h2 seed=&lyy;

run;

```
data after_first_stage_sampling_h1;
```

```
merge district_site_list first_stage_sampling_h1 (in = yy1);
```

by district;

if yy1 = 1;

run;

```
data after_first_stage_sampling_h2;
```

```
merge district_site_list first_stage_sampling_h2 (in = yy1);
```

by district;

if yy1 = 1;

run;

proc surveyselect data=after_first_stage_sampling_h1 noprint

method=srs out=second_stage_sampling_h1 (drop=SelectionProb

```
SamplingWeight) sampsize=&f2h1 seed=&lyy;
```

strata district;

run;

```
proc surveyselect data=after_first_stage_sampling_h2 noprint
```

method=srs out=second_stage_sampling_h2 (drop=SelectionProb

SamplingWeight) sampsize=&f2h2 seed=&lyy;

strata district;

run;

proc sort data=xc_population;

by district site;

run;

```
proc sort data=second_stage_sampling_h1;
```

by district site;

run;

```
proc sort data=second_stage_sampling_h2;
```

by district site;

run;

data after_second_stage_sampling_h1;

merge xc_population_h1 second_stage_sampling_h1 (in = yy2);

by district site;

if yy2 = 1;

run;

```
data after_second_stage_sampling_h2;
```

merge xc_population_h2 second_stage_sampling_h2 (in = yy2);

by district site;

if yy2 = 1;

run;

proc surveyselect data=after_second_stage_sampling_h1 noprint

 $method = srs \ out = third_stage_sampling_h1 \ (drop = SelectionProb$

SamplingWeight) samprate=&f3h1 seed=&lyy;

strata district site;

run;

proc surveyselect data=after_second_stage_sampling_h2 noprint

method=srs out=third_stage_sampling_h2 (drop=SelectionProb

```
SamplingWeight) samprate=&f3h2 seed=&lyy;
```

strata district site;

run;

```
data third_stage_sampling;
```

set third_stage_sampling_h1 third_stage_sampling_h2;

run;

proc sql noprint;

create table fcs_chosen_number as

select h,count(h) as fcs from third_stage_sampling

group by h;

quit;

proc sql noprint;

create table fcs_total_number as

select h,count(h) as total from xc_population

group by h;

quit;

proc sql noprint;

create table w_h as

select h,total/sum(total)as w

from fcs_total_number;

quit;

proc sql noprint;

create table district_site_totalnumber as

select h,count(distinct district) as n1,

count(distinct site)/(calculated n1)as n2_bar

from xc_population

group h;

quit;

proc sql noprint;

create table district_site_number as

select h,count(distinct district) as nn1,

count(distinct site)/(calculated nn1)as nn2_bar

from third_stage_sampling

group h;

quit;

data xc;

merge third_stage_sampling

fcs_chosen_number fcs_total_number

w_h district_site_number district_site_totalnumber;

by h;

run;

proc sql noprint;

create table xc_rrt as

select district,site,h,count(h) as per_rdsh from xc

group by district, site, h;

quit;

data xc1;set xc_rrt;

seed=1;

do _i_=1 to per_rdsh;

rrt_additive3=(int(0+(10-0)*ranuni(seed)))*10;

output;

end;

run;

data xc;

set xc;set xcl(keep=rrt_additive3);

```
c3=c3_real+rrt_additive3;
```

run;

proc sql noprint;

create table rrt_mean as

select district, site, h, mean(rrt_additive3) as rrt_mean

from xc

group by district, site, h;

quit;

proc sql noprint;

create table yunni as

select h,mean(c3)as mean,std(c3_real)as std

from xc

group by h;

quit;

proc sql noprint;

create table c3_no as

select district, site, h, sum(c3) as sum_ijz, count(c3) as chosen_fcs

from xc

group by district, site, h

order by h,district,site;

quit;

data c3;

merge c3_no fcs_total_number fcs_chosen_number

```
district_site_number district_site_totalnumber w_h;
```

by h;

uijz=sum_ijz/chosen_fcs;uij=uijz-45;

nij3=chosen_fcs/sampling_ratio;

nij3_uij=nij3*uij;

run;

```
proc sql noprint;
```

create table c3_u as

select h,district,sum(nij3_uij) as sum_nij3_uij,nn1,nn2_bar,n1,n2_bar

from c3

group by h,district;

quit;

```
proc sql noprint;
```

```
create table c3_u as
```

select h,sum((n2_bar/nn2_bar)*sum_nij3_uij) as sum_ni2_ni2_sum_nij3_uij

from c3_u

group by h;

quit;

```
data c3_u;
```

merge c3_u fcs_total_number

w_h fcs_chosen_number

district_site_number district_site_totalnumber;

by h;

```
u_h=n1/nn1/total*sum_ni2_ni2_sum_nij3_uij;
```

 $w_u_h=w^*u_h;$

```
run;
```

```
proc sql noprint;
create table c3_mu as
```

select sum(w_u_h) as u from c3_u;

quit;

```
proc sql noprint;
```

create table $c3_v3$ as

select h,district,site,var(c3)as stdijk,

n1,n2_bar,nn1,nn2_bar,fcs,total,w

from xc

group by h,district,site;

quit;

proc sql noprint;

create table c3_v3 as

select h,district,sum(stdijk)as sum_stdijk,

n1,n2_bar,nn1,nn2_bar,fcs,total,w

from c3_v3

group by h,district;

quit;

```
proc sql noprint;
```

create table c3_v3 as

select h,sum(1/nn2_bar*sum_stdijk)as sum_reciprocal_ni2_sum_stdijk,

n1,n2_bar,nn1,nn2_bar,fcs,total,w

from c3_v3

group by h;

```
quit;
```

proc sql noprint;

```
create table c3_v3 as
```

select h,(sum_reciprocal_ni2_sum_stdijk/nn1)as v3h

from c3_v3;

quit;

```
proc sql noprint;
     create table c3_v2_ui as select *
     from c3;
quit;
proc sql noprint;
     create table c3_v2_ui as
     select h,district,sum(nij3)as sum_nij3,sum(nij3_uij)as sum_nij3_uij,
             (calculated sum_nij3_uij)/(calculated sum_nij3) as ui
     from c3_v2_ui
     group by h,district;
quit;
proc sort data=c3;by h district;run;
data c3_v2;
     merge c3 c3_v2_ui;
     by h district;
     uij_ui_square=(uij-ui)**2;
run;
proc sort data=c3_v2;by district site h;run;
proc sql noprint;
     create table c3_v2 as
     select h,district,sum(uij_ui_square)as sum_uij_ui_square,
             (calculated sum_uij_ui_square)/(nn2_bar-1) as stdij,
             n1,n2_bar,nn1,nn2_bar,fcs,total,w
     from c3_v2
     group by h,district;
quit;
proc sort data=c3_v2 out=c3_v2 nodup;by h district;run;
```

proc sql noprint;

create table c3_v2 as

select h,sum(stdij)as sum_stdij,(calculated sum_stdij)/nn1 as v2h,

```
n1,n2_bar,nn1,nn2_bar,fcs,total,w
```

from $c3_v2$

group by h;

quit;

proc sort data=c3_v2 out=c3_v2 nodup;by h;run;

data c3_v1;

merge c3_u c3_v2_ui(keep=h district);by h;

run;

proc sql noprint;

create table c3_v1 as

select h,district,(ui-u_h)*(ui-u_h)as u_ui_square,

n1,n2_bar,nn1,nn2_bar,fcs,total,w

from c3_v1;

quit;

proc sql noprint;

create table c3_v1 as

select h,sum(u_ui_square)as sum_u_ui_square,

(calculated sum_u_ui_square)/(nn1-1)as stdi,

(calculated sum_u_ui_square)/(nn1-1)as v1h,

n1,n2_bar,nn1,nn2_bar,fcs,total,w

from c3_v1

group by h;

quit;

```
data c3_v_u;answer_code='C03';
```

if _n_=1 then set c3_mu;

merge c3_v1(drop=sum_u_ui_square) c3_v2(keep=h v2h) c3_v3(keep=h v3h);

by h;

 $w_h_v_u = w^*w^*(v1h/nn1^*(1-nn1/n1) + v2h/nn1/nn2_bar^*(1-nn2_bar/n2_bar) + v2h/nn2_bar/n2_bar) + v2h/nn2_bar^*(1-nn2_bar/n2_bar) + v2h/nn2_bar/n2_bar) + v2h/nn2_bar/n2_bar^*(1-nn2_bar/n2_bar) + v2h/nn2_bar^*(1-nn2_bar) + v2h/n2_bar) + v2h/n2_bar^*(1-nn2_bar) + v2h/n2_bar) + v2h/n2_bar^*(1-nn2_bar) + v2h/n2_bar) + v2h/n2_bar^*(1-nn2_bar) + v2h/n2_bar) + v2h/n$

v3h/fcs*((fcs/nn1/nn2_bar)/(total/n1/n2_bar)));

run;

proc sql noprint;

create table c3_var as

select u,sum(w_h_v_u) as v_u,

u-1.96*sqrt(calculated v_u) as lower_limit,

u+1.96*sqrt(calculated v_u) as upper_limit

from c3_v_u;

quit;

data c3_ss_&lyy;

set c3_v_u;set c3_var;var=v_u;

c3_population_mean=213.67;sequence_number=&lyy;

label v1h='o 1h' v2h='o 2h' v3h='o 3h' u='总体均数估计值' upper_limit='95%上限'

lower_limit='95%下限' answer_code='敏感问题编号' var='var(u)'

c3_population_mean='总体均数';

if c3_population_mean>lower_limit and c3_population_mean<upper_limit

then status='no significance';

run;

```
proc print data=c3_ss_&lyy label;
```

var sequence_number answer_code h v1h v2h v3h u var upper_limit lower_limit

c3_population_mean fcs status;

title "第 &lyy 次 C03: 提供性服务次均收取费用";

run;

%end;

%mend third_stage_sampling;

%third_stage_sampling (times=100);

run;