### Appendix 1

#### Search terms

#### Embase

(aorta/exp OR 'aorta surgery'/de OR 'aorta reconstruction'/de OR aortoplasty/de OR 'aortic root surgery'/de OR 'aortic valve repair'/de OR 'aorta valve'/de OR 'aorta valve disease'/exp OR 'aorta disease'/exp OR 'aortic root aneurysm'/de OR (aort\* OR Valsalva\* OR root OR bav OR tav):ab,ti,kw) AND ('David operation'/de OR 'david procedure'/de OR 'aortic valve David reimplantation'/de OR 'aortic valve sparing procedure'/de OR 'valve sparing aortic root replacement'/de OR 'valve sparing root replacement'/de OR (((valve\*) NEAR/6 (sparing\* OR spare\* OR preserv\* OR reimplant\*)) OR (david NEAR/3 (technique\* OR surger\* OR operat\* OR procedure\* OR reimplan\* OR repair\* OR intervention\* OR tirone\* OR resuspens\*))) OR david-type OR david-1 OR david-1i OR david-2 OR david-v OR david-5):ab,ti,kw OR (david):ti) NOT ([animals]/lim NOT [humans]/lim) NOT [conference abstract]/lim AND [english]/lim

### Medline ALL Ovid

(exp Aorta / OR exp Aortic Diseases / OR aortic root aneurysm/ OR (aort\* OR Valsalva\* OR root OR bav OR tav).ab,ti,kw.) AND ((((valve\*) ADJ6 (sparing\* OR spare\* OR preserv\* OR reimplant\*)) OR (david ADJ3 (technique\* OR surger\* OR operat\* OR procedure\* OR reimplan\* OR repair\* OR intervention\* OR tirone\* OR resuspens\*)) OR david-type OR david-i OR david-1 OR david-ii OR david-2 OR david-v OR david-5).ab,ti,kw. OR (david).ti.) NOT (exp animals/ NOT humans/) AND english.la.

### Cochrane

((aort\* OR Valsalva\* OR root OR bav OR tav):ab,ti) AND ((((valve\*) NEAR/6 (sparing\* OR spare\* OR preserv\* OR reimplant\*)) OR (david NEAR/3 (technique\* OR surger\* OR operat\* OR procedure\* OR reimplan\* OR repair\* OR intervention\* OR tirone\* OR resuspens\*)) OR david-type OR david-i OR david-1 OR david-ii OR david-2 OR david-v OR david-5):ab,ti OR (david):ti)

### Web of science

TS=(((aort\* OR Valsalva\* OR root OR bav OR tav)) AND ((((valve\*) NEAR/5 (sparing\* OR spare\* OR preserv\* OR reimplant\*)) OR (david NEAR/2 (technique\* OR surger\* OR operat\* OR procedure\* OR reimplan\* OR repair\* OR intervention\* OR tirone\* OR resuspens\*)) OR david-type OR david-i OR david-1 OR david-ii OR david-2 OR david-v OR david-5))) NOT DT=(Meeting Abstract OR Meeting Summary) AND LA=(english)

### Google Scholar

Aorta | aortic | Valsalva | root "valve sparing | spare | preserving | reimplantation" | "david technique | surgery | operation | procedur e | reimplantation | repair | intervention | resuspension | type"

# **Appendix 2**

### **Background mortality**

For the overall group and bicuspid/tricuspid subgroup separately, the background mortality of the general population was acquired for the pooled median year of intervention within each country among included studies from that country. Country, year and sex-specific background mortality estimates were obtained from the Human Mortality Database (https://www. mortality.org/). Brazil, Turkey and China are not included in this database, but only 8% of included patients originated from these countries, and they were not present in the subgroups. Proportion of individuals of the included countries are presented in Table S3. Survival was matched with the corresponding year and sex-specific background survival in the countries of origin separately for each subgroup.

# **Excess mortality**

We compared the survival simulated by the microsimulation model with the observed survival in our Kaplan-Meier metaanalysis for time-to-event outcomes to estimate the risk ratio of additional excess mortality not directly resulting from valverelated morbidity relative to the probability of background mortality observed in the general population. We temporarily excluded early mortality, since early mortality was a separate input in our microsimulation model. During the simulation, we iteratively simulated the survival of 10.000 patients with an age deriving from the mean ± SD distribution and proportion of males of the study population using the same mortality due to valve-related events and background mortality, but with varying risk ratios of excess mortality for different timeframes. Subsequently, the risk ratio resulting in the smallest difference between the simulated and observed survival according to the least squares method was chosen as the suitable risk ratio for excess mortality. The iterative procedure (by minimizing least squares) is based on the golden section search method (Kiefer, J. (1953), "Sequential minimax search for a maximum").

# Probabilistic sensitivity analysis (PSA)

Probabilistic sensitivity analysis (PSA) was performed to consider the uncertainty in input parameters of our microsimulation and to reflect the implications for uncertainty in outcomes. In the PSA, the model considered a sample size of 1,000 patients per set and ran for 1000 different sets of randomly drawn input parameters. Values of the input parameters were randomly drawn from the following distributions: beta distributions for early mortality risk and probabilities of re-interventions and death after valve-related events, log-normal distributions for late events and normal distributions for the RR of mortality after reintervention and excess mortality, varied with +/-10%. For all sets of coefficients, the mean outcome in the 1000 patients was recorded and the mean (point estimate) and the 2.5% and 97.5% percentiles (credible interval) over all the 1000 mean values for each outcome were computed. PSA allows the microsimulation to take into account both first-order uncertainty (random variation in outcomes between identical patients) and second-order uncertainty (uncertainty in the input parameters).

# Appendix 3

Baumbach H, Wachter K, Nagib R, et al. Complex cusp repair in patients undergoing the david procedure: Is it worth it? The Annals of Thoracic Surgery. 2016;102(2):483-488. doi:10.1016/j.athoracsur.2016.01.094.

Bavaria JE, Desai N, Szeto WY, et al. Valve-sparing root reimplantation and leaflet repair in a bicuspid aortic valve: Comparison with the 3-cusp David Procedure. The Journal of Thoracic and Cardiovascular Surgery. 2015;149(2). doi:10.1016/j.jtcvs.2014.10.103.

Bernhardt AMJ, Treede H, Rybczynski M, et al. Comparison of aortic root replacement in patients with Marfan syndrome. European Journal of Cardio-Thoracic Surgery. 2011. doi:10.1016/j.ejcts.2011.02.018.

Bethancourt C-N, Blitzer D, Yamabe T, et al. Valve-sparing root replacement versus bio-bentall: Inverse propensity weighting of 796 patients. The Annals of Thoracic Surgery. 2022;113(5):1529-1535. doi:10.1016/j.athoracsur.2021.05.044.

Bori Bata A-K, D'Ostrevy N, Pereira B, et al. Valve-sparing aortic root replacement—midterm outcomes and quality of life. Cardiovascular Diagnosis and Therapy. 2017:572-580. doi:10.21037/cdt.2017.08.02.

Cardoso LF, Dias RR, Dinato FJ, et al. Impact of aortic valve function and the need for aortic valve repair on long-term outcomes of valve-sparing Aortic Root Replacement: 13-year experience of David Operation. Heart, Lung and Circulation. 2021;30(6):902-908. doi:10.1016/j.hlc.2020.10.020.

Cevasco M, McGurk S, Yammine M, et al. Early and midterm outcomes of valve-sparing aortic root replacement—reimplantation technique. AORTA. 2018;06(05):113-117. doi:10.1055/s-0039-1683383.

David TE, David CM, Ouzounian M, Feindel CM, Lafreniere-Roula M. A progress report on reimplantation of the aortic valve. The Journal of Thoracic and Cardiovascular Surgery. 2021;161(3). doi:10.1016/j.jtcvs.2020.07.121.

de Meester C, Vanovershelde J-L, Jahanyar J, et al. Long-term durability of bicuspid aortic valve repair: A comparison of 2 annuloplasty techniques. European Journal of Cardio-Thoracic Surgery. 2021;60(2):286-294. doi:10.1093/ejcts/ezaa471.

De Paulis R, Chirichilli I, Scaffa R, et al. Long-term results of the valve reimplantation technique using a graft with sinuses. The Journal of Thoracic and Cardiovascular Surgery. 2016;151(1):112-119. doi:10.1016/j.jtcvs.2015.08.026.

Demirdaş E. Mid-term results of aortic root repair using the reimplantation technique: Our single-center experience. The Turkish Journal of Thoracic and Cardiovascular Surgery. 2016;24(2):233-239. doi:10.5606/tgkdc.dergisi.2016.12422.

Esaki J, Leshnower BG, Binongo JN, et al. Clinical outcomes of the david V valve-sparing root replacement compared with bioprosthetic valve-conduits for aortic root aneurysms. The Annals of Thoracic Surgery. 2017;103(6):1824-1832. doi:10.1016/j.athoracsur.2016.09.055.

Forteza Gil A, Martinez-Lopez D, Centeno J, et al. Aortic valve reimplantation in patients with connective tissue syndromes: A 15-year follow-up. European Journal of Cardio-Thoracic Surgery. 2022;62(3). doi:10.1093/ejcts/ezac149.

Franke UFW, Isecke A, Nagib R, et al. Quality of life after aortic root surgery: Reimplantation technique versus composite replacement. The Annals of Thoracic Surgery. 2010;90(6):1869-1875. doi:10.1016/j.athoracsur.2010.07.067.

Gaudino M, Di Franco A, Ohmes LB, et al. Biological Solutions to aortic root replacement: Valve-sparing versus bioprosthetic conduit<sup>‡</sup>. Interactive CardioVascular and Thoracic Surgery. 2017;24(6):855-861. doi:10.1093/icvts/ivx010.

Escobar Kvitting J-P, Kari FA, Fischbein MP, et al. David Valve-sparing Aortic Root Replacement: Equivalent mid-term outcome for different valve types with or without connective tissue disorder. The Journal of Thoracic and Cardiovascular Surgery. 2013;145(1). doi:10.1016/j.jtcvs.2012.09.013.

Gocoł R, Malinowski M, Bis J, et al. Aneurysm of the aortic root and valve sparing aortic root replacement: Long-term outcomes from a single Polish center. Kardiologia Polska. 2020;78(12):1235-1242. doi:10.33963/kp.15636.

Holubec T, Rashid H, Hecker F, et al. Early- and longer-term outcomes of David versus Florida sleeve procedure: Propensity-matched comparison. European Journal of Cardio-Thoracic Surgery. 2022;62(3). doi:10.1093/ejcts/ezac104.

Huuskonen A, Valo J, Kaarne M, et al. Outcome of valve sparing root replacement for diverse indications. Scandinavian Cardiovascular Journal. 2021;55(3):173-179. doi:10.1080/14017431.2020.1869298.

Kalra K, Wagh K, Wei JW, et al. Regurgitant bicuspid aortopathy: Is valve-sparing root replacement equivalent to bentall procedure? The Annals of Thoracic Surgery. 2021;112(3):737-745. doi:10.1016/j.athoracsur.2020.08.074.

Karciauskas D, Mizariene V, Jakuska P, et al. Early and long-term results of aortic valve sparing aortic root reimplantation surgery for bicuspid and tricuspid aortic valves. Perfusion. 2019;34(6):482-489. doi:10.1177/0267659119831926.

Klotz S, Stock S, Sievers H-H, et al. Survival and reoperation pattern after 20 years of experience with aortic valve–sparing root replacement in patients with tricuspid and bicuspid valves. The Journal of Thoracic and Cardiovascular Surgery. 2018;155(4). doi:10.1016/j.jtcvs.2017.12.039.

Koolbergen DR, Manshanden JS, Bouma BJ, et al. Valve-sparing aortic root replacement<sup>†</sup>. European Journal of Cardio-Thoracic Surgery. 2014;47(2):348-354. doi:10.1093/ejcts/ezu167.

Kremer J, Farag M, Zaradzki M, et al. The reimplantation valve-sparing aortic root replacement technique for patients with Marfan Syndrome: A single-center experience. Scientific Reports. 2019;9(1). doi:10.1038/s41598-019-48572-9.

Lau C, Wingo M, Rahouma M, et al. Valve-sparing root replacement in patients with bicuspid aortopathy: An analysis of cusp repair strategy and valve durability. The Journal of Thoracic and Cardiovascular Surgery. 2021;161(2):469-478. doi:10.1016/j.jtcvs.2019.10.048.

Lee H, Cho YH, Sung K, et al. Clinical outcomes of root reimplantation and bentall procedure: Propensity score matching analysis. The Annals of Thoracic Surgery. 2018;106(2):539-547. doi:10.1016/j.athoracsur.2018.02.057.

Lenoir M, Maesen B, Stevens L-M, et al. Reimplantation versus remodelling with Ring annuloplasty: Comparison of midterm outcomes after valve-sparing aortic root replacement<sup>†</sup>. European Journal of Cardio-Thoracic Surgery. 2018;54(1):48-54. doi:10.1093/ejcts/ezy016.

Leontyev S, Schamberger L, Davierwala PM, et al. Early and late results after david vs bentall procedure: A propensity matched analysis. The Annals of Thoracic Surgery. 2020;110(1):120-126. doi:10.1016/j.athoracsur.2019.10.020.

Liebrich M, Charitos E, Stadler C, et al. Additional cusp reconstruction does not compromise valve durability and mid-term survival after the david procedure: Results from 449 patients. European Journal of Cardio-Thoracic Surgery. 2020;58(5):1072-1079. doi:10.1093/ejcts/ezaa149.

Manganiello S, Soquet J, Mugnier A, et al. David procedure: A 21-year experience with 300 patients. The Annals of Thoracic Surgery. 2022. doi:10.1016/j.athoracsur.2022.04.058.

Martín CE, García Montero C, Serrano S-F, et al. The influence of Marfans and bicuspid valves on outcomes following aortic valve reimplantation. Journal of Cardiac Surgery. 2017;32(10):604-612. doi:10.1111/jocs.13206.

Martino AD, Re F, Blasi S, et al. Surgical treatment of annuloaortic ectasia – replace or repair? AORTA. 2017;05(05):139-147. doi:10.12945/j.aorta.2017.17.044.

Mignosa C, Di Stefano S, Mazzamuto M, et al. Midterm follow-up of the reimplantation technique in patients with relatively normal annulus: Is david I still a clinically valid option? The Journal of Thoracic and Cardiovascular Surgery. 2014;148(4):1334-1340. doi:10.1016/j.jtcvs.2013.11.042.

Ntinopoulos V, Papadopoulos N, Odavic D, Haeussler A, Loeblein H, Dzemali O. Aortic root replacement with reimplantation of the aortic valve: A low-volume center experience. The Thoracic and Cardiovascular Surgeon. 2021;70(04):297-305. doi:10.1055/s-0041-1723844.

Patel PM, Wei JW, McPherson LR, Binongo J, Leshnower BG, Chen EP. Bicuspid aortic valve sparing Root Replacement. Journal of Cardiac Surgery. 2020;36(1):118-123. doi:10.1111/jocs.15210.

Pujos C, D'ostrevy N, Farhat M, et al. Fifteen-year experience with the tirone david procedure in bicuspid aortic valve: A safe option. Journal of Cardiac Surgery. 2022;37(11):3469-3476. doi:10.1111/jocs.16953.

Settepani F, Cappai A, Basciu A, et al. Impact of cusp repair on reoperation risk after the david procedure. The Annals of Thoracic Surgery. 2016;102(5):1503-1511. doi:10.1016/j.athoracsur.2016.04.061.

Shrestha M, Boethig D, Krüger H, et al. Valve-sparing aortic root replacement using a straight tube graft (David I procedure). The Journal of Thoracic and Cardiovascular Surgery. 2022. doi:10.1016/j.jtcvs.2022.01.061.

Stefanelli G, Pirro F, Chiurlia E, Bellisario A, Weltert L. Mid-term outcomes of Stentless Bio-Bentall vs. David Reimplantation for aortic root replacement. Journal of Cardiac Surgery. 2022;37(4):781-788. doi:10.1111/jocs.16271.

Svensson LG, Rosinski BF, Tucker NJ, et al. Comparison of outcomes of patients undergoing reimplantation versus Bentall Root procedure. AORTA. 2022;10(02):57-68. doi:10.1055/s-0042-1744135.

Tamer S, Mastrobuoni S, Momeni M, et al. Long-term experience with valve-sparing root reimplantation surgery in tricuspid aortic valve. Indian Journal of Thoracic and Cardiovascular Surgery. 2019;36(S1):71-80. doi:10.1007/s12055-019-00842-x.

Tkebuchava S, Tasar R, Lehmann T, et al. Predictors of outcome for aortic valve reimplantation including the surgeon—a single-center experience. The Thoracic and Cardiovascular Surgeon. 2018;68(07):567-574. doi:10.1055/s-0038-1675594.

Vallabhajosyula P, Szeto WY, Habertheuer A, et al. Bicuspid aortic insufficiency with aortic root aneurysm: Root reimplantation versus Bentall Root Replacement. The Annals of Thoracic Surgery. 2016;102(4):1221-1228. doi:10.1016/j.athoracsur.2016.03.087.

Xu L, Gao F, Li P, et al. Early and midterm outcomes of the VSSR procedure with De Paulis Valsalva Graft: A Chinese single-center experience in 38 patients. Journal of Cardiothoracic Surgery. 2015;10(1). doi:10.1186/s13019-015-0347-1.

Yokawa K, Ikeno Y, Koda Y, et al. Valve-sparing root replacement in elderly patients with annuloaortic ectasia. The Annals of Thoracic Surgery. 2019;107(5):1342-1347. doi:10.1016/j.athoracsur.2018.10.075.

| Table S1 Input parameters microsimulation and their source                                  |                                                                                                               |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                                                                                   | Source                                                                                                        |  |  |  |
| Baseline                                                                                    |                                                                                                               |  |  |  |
| Age                                                                                         | Sample size weighted summarized age                                                                           |  |  |  |
| SD Age                                                                                      | Sample size weighted summarized SD age                                                                        |  |  |  |
| Sex                                                                                         | Proportion of males included studies                                                                          |  |  |  |
| Early events                                                                                |                                                                                                               |  |  |  |
| Early mortality                                                                             | Meta-analysis (pooled proportion)                                                                             |  |  |  |
| Early endocarditis                                                                          | Meta-analysis (pooled proportion)                                                                             |  |  |  |
| Early Valve thrombosis                                                                      | Meta-analysis (pooled proportion)                                                                             |  |  |  |
| Early bleeding                                                                              | Meta-analysis (pooled proportion)                                                                             |  |  |  |
| Early MI                                                                                    | Meta-analysis (pooled proportion)                                                                             |  |  |  |
| Risk ratio early mortality reintervention                                                   | Calculated by dividing early mortality by mortality due to AV reintervention                                  |  |  |  |
| Late events                                                                                 |                                                                                                               |  |  |  |
| Late mortality (background)                                                                 | HMD life tables                                                                                               |  |  |  |
| Observed mortality                                                                          | Reconstructed-IPD KM of late mortality                                                                        |  |  |  |
| Late mortality excess mortality risk ratio                                                  | Calculated by difference between background mortality + valve related mortality and observed mortality        |  |  |  |
| Late mortality valve related                                                                | Mortality caused by early mortality, late bleeding, late stroke, late endocarditis, overall AV reintervention |  |  |  |
| Late AV reintervention                                                                      | Reconstructed-IPD KM of overall AV reintervention*                                                            |  |  |  |
| Late Bleeding                                                                               | Meta-analysis (pooled adverse event rate)                                                                     |  |  |  |
| Late Stroke                                                                                 | Meta-analysis (pooled adverse event rate)                                                                     |  |  |  |
| Late endocarditis                                                                           | Meta-analysis (pooled adverse event rate)                                                                     |  |  |  |
| Late Valve thrombosis                                                                       | Meta-analysis (pooled adverse event rate)                                                                     |  |  |  |
| Consequences of events                                                                      |                                                                                                               |  |  |  |
| Reintervention due to endocarditis                                                          | Summarized proportion reported intervention for endocarditis                                                  |  |  |  |
| Reintervention due to valve thrombosis                                                      | Summarized proportion reported intervention for endocarditis                                                  |  |  |  |
| Mortality due to bleeding                                                                   | Summarized proportion reported mortality for bleeding                                                         |  |  |  |
| Mortality due to stroke                                                                     | Summarized proportion reported mortality for stroke                                                           |  |  |  |
| Mortality due to endocarditis                                                               | Summarized proportion reported mortality for endocarditis                                                     |  |  |  |
| Mortality due to valve thrombosis                                                           | Summarized proportion reported mortality for valve thrombosis                                                 |  |  |  |
| Mortality due to AV reintervention (only used to calculate RR early mortality intervention) | Summarized proportion reported mortality for AV reintervention                                                |  |  |  |



**Figure S1** Explanation of different microsimulation based sources of mortality. Background mortality is mortality in the matched background population. Valve-related event mortality is the mortality due to valve related events (AV reintervention, endocarditis, stroke, thrombo-embolism, bleeding, valve-thrombosis). Excess mortality is the additional mortality patients exhibit minus valve related event mortality and background mortality.

| Table S2 Estimated risk ratios of excess mortality for specific timeframes |            |             |               |                |
|----------------------------------------------------------------------------|------------|-------------|---------------|----------------|
| Group                                                                      | 0–3 months | 4–12 months | 13–120 months | 121-240 months |
| Total group                                                                | 3.754      | 3.754       | 0.88          | 0.981          |
| BAV group                                                                  | 0.43       | 0.43        | 0.43          | 0.43           |
| TAV group                                                                  | 11.5       | 0.96        | 0.96          | 0.96           |
|                                                                            |            |             |               |                |

BAV, Bicuspid aortic valve; TAV, tricuspid aortic valve.

| Table S3 Proportion of individuals from included countries |            |                     |                   |                     |                    |                     |       |
|------------------------------------------------------------|------------|---------------------|-------------------|---------------------|--------------------|---------------------|-------|
| Country Year                                               | Veer       | Overall group       | Bicuspid subgroup |                     | Tricuspid subgroup |                     |       |
|                                                            | Proportion | Adjusted proportion | Proportion        | Adjusted proportion | Proportion         | Adjusted proportion |       |
| Belgium                                                    | 2008       | 4.2%                | 4.4%              | 12.5%               | 12.5%              | 14.3%               | 14.3% |
| Brazil                                                     | -          | 2.1%                | 0.0%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| China                                                      | -          | 4.2%                | 0.0%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Canada                                                     | 2004       | 2.1%                | 4.4%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Finland                                                    | 2011       | 2.1%                | 2.2%              | 12.5%               | 12.5%              | 0.0%                | 0.0%  |
| France                                                     | 2011       | 6.3%                | 6.7%              | 12.5%               | 12.5%              | 0.0%                | 0.0%  |
| Germany                                                    | 2011       | 25.0%               | 26.7%             | 0.0%                | 0.0%               | 14.3%               | 14.3% |
| Italy                                                      | 2007       | 12.5%               | 13.3%             | 0.0%                | 0.0%               | 14.3%               | 14.3% |
| Japan                                                      | 2018       | 4.2%                | 4.4%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Lithuania                                                  | 2010       | 2.1%                | 2.2%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Netherlands                                                | 2008       | 2.1%                | 2.2%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Poland                                                     | 2015       | 2.1%                | 2.2%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Korea                                                      | 2004       | 2.1%                | 2.2%              | 0.0%                | 0.0%               | 14.3%               | 14.3% |
| Spain                                                      | 2011       | 4.2%                | 4.4%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| Switzerland                                                | 2015       | 2.1%                | 2.2%              | 0.0%                | 0.0%               | 14.3%               | 14.3% |
| Turkey                                                     | -          | 2.1%                | 0.0%              | 0.0%                | 0.0%               | 0.0%                | 0.0%  |
| USA                                                        | 2009       | 20.8%               | 22.2%             | 62.5%               | 62.5%              | 28.6%               | 28.6% |

| Table S4 Types of distribution fit to pooled time-to-event data for all time-varying risks in the microsimulation model |                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| Bicuspid aortic valve                                                                                                   | Linearized occurrence rate  |  |  |
| Tricuspid aortic valve                                                                                                  | Gamma distribution          |  |  |
| Total group                                                                                                             | Royston-Parmar distribution |  |  |
|                                                                                                                         |                             |  |  |

 Table S5 Pre and perioperative characteristics in TAV and BAV

| Variable                                         | Pooled Data | Range     | Included Studies (n) | Included Patients (n) |
|--------------------------------------------------|-------------|-----------|----------------------|-----------------------|
| Tricuspid Aortic Valve (TAV)                     |             |           |                      |                       |
| Total patient number (n)                         | 2054        | 58–448    | 11                   | 2054                  |
| Surgical period (years)                          | 1995–2020   |           | 11                   | 2054                  |
| Age (years), mean ± SD                           | 48.6±14.2   | 36–57.5   | 10                   | 1996                  |
| Gender, male (%)                                 | 80.7        | 56.9–93.1 | 11                   | 2054                  |
| Comorbidity                                      |             |           |                      |                       |
| Renal insufficiency (dialysis) (%)               | 0.6         | 0-0.9     | 3                    | 482                   |
| LV dysfunction (EF <30%)                         | 2.9         | 1.3–6.4   | 3                    | 375                   |
| Hypertension (%)                                 | 50.1        | 22.0-79.4 | 8                    | 1365                  |
| Coronary artery disease (%)                      | 16.3        | 2.9–38.1  | 6                    | 1106                  |
| Connective tissue disease (%)                    | 30.2        | 0–100     | 8                    | 1112                  |
| Bicuspid aortic valve (%)                        | 0           | 0         | 11                   | 2054                  |
| Prior cardiac operation (%)                      | 4.9         | 0–16.2    | 6                    | 1424                  |
| Emergency surgery (%)                            | 3.3         | 0–17.2    | 9                    | 1965                  |
| Reexploration for bleeding (%)                   | 5.0         | 0–15.9    | 10                   | 1884                  |
| Concomitant procedure (n)                        | 745         | 14–168    | 10                   | 1726                  |
| Mitral valve plasty (%)                          | 7.0         | 1.4–9.8   | 10                   | 1726                  |
| Mitral valve replacement (%)                     | 0.2         | 0–1.7     | 7                    | 982                   |
| Tricuspid valve surgery (%)                      | 1.7         | 0-6.4     | 7                    | 1262                  |
| CABG (%)                                         | 9.5         | 0–23.6    | 10                   | 1726                  |
| Hemiarch repair (%)                              | 20.7        | 9.5–90.2  | 6                    | 916                   |
| Arch repair (%)                                  | 12.0        | 1.9–10.0  | 7                    | 903                   |
| Other (VSD repair, MAZE etc.) (%)                | 8.9         | 1.9–25.3  | 9                    | 1637                  |
| Extracorporeal circulation time, min., mean ± SD | 164.3±40.6  | 127-227   | 11                   | 2054                  |
| Aortic cross-clamping time min., mean ± SD       | 133.9±30.6  | 99–231    | 11                   | 2054                  |
| Bicuspid Aortic Valve (BAV)                      |             |           |                      |                       |
| Total patient number (n)                         | 865         | 29–189    | 12                   | 865                   |
| Surgical period (years)                          | 1993–2022   |           | 12                   | 865                   |
| Age (years), mean ± SD                           | 44.0±12.3   | 40.1-47.4 | 12                   | 865                   |
| Gender, male (%)                                 | 89.1        | 79.4–100  | 12                   | 865                   |
| Comorbidity                                      |             |           |                      |                       |
| Renal insufficiency (dialysis) (%)               | 0           | 0         | 3                    | 190                   |
| LV dysfunction (EF <30%)                         | 0           | 0         | 2                    | 246                   |
| Hypertension (%)                                 | 41          | 17.5–79.5 | 12                   | 865                   |
| Coronary artery disease (%)                      | 8.7         | 3.5–20.7  | 4                    | 254                   |
| Connective tissue disease (%)                    | 3.8         | 0–9.1     | 6                    | 426                   |
| Bicuspid aortic valve (%)                        | 100         | 100       | 12                   | 865                   |
| Prior cardiac operation (%)                      | 2.6         | 0-6.4     | 8                    | 628                   |
| Emergency surgery (%)                            | 1.6         | 0-4.6     | 8                    | 506                   |
| Reexploration for bleeding (%)                   | 2.5         | 0–5.1     | 9                    | 556                   |
| Concomitant procedure (n)                        | 321         | 0–63      | 12                   | 865                   |
| Mitral valve plasty (%)                          | 2.2         | 0–7.2     | 11                   | 808                   |
| Mitral valve replacement (%)                     | 0           | 0         | 8                    | 562                   |
| Tricuspid valve surgery (%)                      | 0.2         | 0–0.5     | 8                    | 645                   |
| CABG (%)                                         | 5.00        | 0–10.3    | 11                   | 808                   |
| Hemiarch repair (%)                              | 20.1        | 0–64.1    | 7                    | 603                   |
| Arch repair (%)                                  | 22.6        | 0–76.2    | 9                    | 541                   |
| Other (VSD repair, MAZE etc.) (%)                | 2.8         | 0–11.1    | 9                    | 690                   |
| Extracorporeal circulation time, min., mean ± SD | 190.9±33.8  | 122-309   | 12                   | 865                   |
| Aortic cross-clamping time min., mean ± SD       | 159.8±27.1  | 97–242    | 12                   | 865                   |

| Table S6 Univariable meta regression for re-exploration for bleeding and late mortality |                 |         |                           |  |  |
|-----------------------------------------------------------------------------------------|-----------------|---------|---------------------------|--|--|
| Characteristic                                                                          | B estimate (SE) | P-value | % heterogeneity explained |  |  |
| Re-exploration for bleeding                                                             |                 |         |                           |  |  |
| Mean year of surgery                                                                    | 0.05 (0.03)     | 0.10    | 0%                        |  |  |
| Age                                                                                     | 0.04 (0.01)     | 0.002   | 26%                       |  |  |
| Males (per 1% increase)                                                                 | 0.01 (0.01)     | 0.32    | 0%                        |  |  |
| Mean follow-up years                                                                    | 0.02 (0.05)     | 0.64    | 0%                        |  |  |
| BAV (vs TAV) (per 1 % increase)                                                         | -0.01 (0.01)    | 0.16    | 1%                        |  |  |
| Cardiopulmonary bypass time                                                             | -0.004 (0.003)  | 0.08    | 0%                        |  |  |
| Late mortality                                                                          |                 |         |                           |  |  |
| Mean year of surgery                                                                    | -0.03 (0.03)    | 0.35    | 0%                        |  |  |
| Age                                                                                     | 0.06 (0.01)     | <.001   | 50%                       |  |  |
| Males (per 1% increase)                                                                 | 0.03 (0.02)     | 0.03    | 0%                        |  |  |
| Mean follow-up years                                                                    | 0.02 (0.06)     | 0.70    | 0%                        |  |  |
| BAV (vs TAV) (per 1 % increase)                                                         | -0.003 (0.004)  | 0.39    | 9%                        |  |  |
| Cardiopulmonary bypass time                                                             | -0.004 (0.002)  | 0.03    | 1%                        |  |  |
| BAV. Bicuspid aortic valve: TAV. tricuspid aortic valve.                                |                 |         |                           |  |  |

**Table S7** Pooled early risks and linearized occurrence rates of the total group after temporarily excluding studies with the lowest 25<sup>th</sup> sample size or patient years (in case of late outcomes)

| £                                  |          |           |                      |
|------------------------------------|----------|-----------|----------------------|
| Outcome                            | Risk (%) | 95% CI    | Studies included (n) |
| Early Outcomes                     |          |           |                      |
| Early mortality                    | 1.5      | 1.1–1.9   | 33                   |
| Reintervention on the aortic valve | 0.4      | 0.3–0.6   | 24                   |
| Reexploration for bleeding         | 5.1      | 4.1–6.4   | 30                   |
| Stroke                             | 0.9      | 0.6–1.4   | 27                   |
| Late Outcomes                      |          |           |                      |
| Late mortality                     | 0.86     | 0.67–1.11 | 28                   |
| Reintervention on the aortic valve | 0.67     | 0.52–0.86 | 25                   |
| Endocarditis                       | 0.21     | 0.14–0.30 | 26                   |
| Stroke                             | 0.22     | 0.16–0.33 | 20                   |
| Bleeding                           | 0.14     | 0.07-0.29 | 14                   |



**Figure S2** Calibration plots of microsimulation based mortality (black line) and observed mortality (KM curves, red line) for total group (A), bicuspid group (B) and tricuspid group (C).