Supplement I

The intrapulmonary shunt formula

The intrapulmonary shunt (Qs/Qt) was calculated with the standard formula:

$$
\begin{equation*}
\mathrm{Qs} / \mathrm{Qt}=\left(\mathrm{C}_{\mathrm{c}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}\right) /\left(\mathrm{C}_{\mathrm{c}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}\right) \tag{4}
\end{equation*}
$$

Where Qs is the amount of blood flow that does not participate in pulmonary gas exchange; Qt is the total cardiac output, $\mathrm{C}_{\mathrm{c}}, \mathrm{O}_{2}$ is the alveolar oxygen content, $\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}$ is the arterial blood oxygen content, and $\mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}$ is the mixed venous blood oxygen content.

The oxygen content of each portion of blood $\left(\mathrm{C}_{\mathrm{x}} \mathrm{O}_{2}\right)$ can be calculated by:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{x}} \mathrm{O}_{2}=1.34 \times \mathrm{Hb} \times \mathrm{S}_{\mathrm{x}} \mathrm{O}_{2}+\mathrm{P}_{\mathrm{x}} \mathrm{O}_{2} \times 0.0031 \tag{5}
\end{equation*}
$$

Where 1.34 is the volume of oxygen carried by fully saturated hemoglobin, Hb is the hemoglobin concentration $(\mathrm{g} / \mathrm{dL}), \mathrm{S}_{\mathrm{x}} \mathrm{O}_{2}$ is the fraction of hemoglobin saturated with oxygen, $\mathrm{P}_{x} \mathrm{O}_{2}$ is the partial pressure of oxygen, and 0.0031 is the Bunsen solubility coefficient for oxygen in plasma.

We assumed that $\mathrm{P}_{\mathrm{c}} \mathrm{O}_{2}$ equals the alveolar partial pressure of oxygen $\left(\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}\right)$, considering complete equilibration of partial pressures of oxygen in the alveolus and in the end of the pulmonary capillary blood. Thus, $\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}$ was calculated from the alveolar gas equation:

$$
\begin{align*}
\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}= & \mathrm{F}_{\mathrm{i}} \mathrm{O}_{2} \times\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)-\mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2} / \mathrm{RQ}+ \\
& \mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2} \times \mathrm{F}_{\mathrm{i}} \mathrm{O}_{2} \times(1-\mathrm{RQ}) / \mathrm{RQ} \tag{6}
\end{align*}
$$

Where P_{B} is the ambient barometric pressure $(760 \mathrm{mmHg}), \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ is the saturation vapor pressure at room temperature $(47 \mathrm{mmHg}), \mathrm{RQ}$ is the respiratory quotient, $\mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2}$ is the partial pressure of CO_{2} in the alveolus $\left(\mathrm{P}_{\mathrm{A}} \mathrm{CO}_{2}\right.$ $\approx \mathrm{PaCO}_{2}$), and $\mathrm{F}_{\mathrm{i}} \mathrm{O}_{2}$ is the fraction of inspired oxygen.

When the patient inhaled 100% oxygen $\left(\mathrm{F}_{\mathrm{i}} \mathrm{O}_{2}=1\right)$, $\mathrm{C}_{\mathrm{c}^{\circ}} \mathrm{O}_{2}, \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}$, and $\mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}$ can be estimated from the simplified equations:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{c}} \mathrm{O}_{2}=1.34 \times \mathrm{Hb} \times \mathrm{S}_{\mathrm{a}} \mathrm{O}_{2}+0.0031 \times\left(713-\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}\right) \tag{1}\\
& \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}=1.34 \times \mathrm{Hb} \times \mathrm{S}_{\mathrm{a}} \mathrm{O}_{2}+0.0031 \times \mathrm{P}_{\mathrm{a}} \mathrm{O}_{2} \tag{8}\\
& \mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}=1.34 \times \mathrm{Hb} \times \mathrm{S}_{\mathrm{v}} \mathrm{O}_{2}+0.0031 \times \mathrm{P}_{\mathrm{v}} \mathrm{O}_{2} \tag{9}
\end{align*}
$$

Where $\mathrm{Hb}, \mathrm{S}_{\mathrm{a}} \mathrm{O}_{2}, \mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}, \mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}, \mathrm{~S}_{\mathrm{v}} \mathrm{O}_{2}, \mathrm{P}_{\mathrm{v}} \mathrm{O}_{2}$ were all obtained from the result of blood gas analysis.

Thus, the intrapulmonary shunt equation is expressed as:
$\mathrm{Qs} / \mathrm{Qt}=\left[1.34 \times \mathrm{Hb} \times \mathrm{SaO}_{2}+0.0031 \times\left(713-\mathrm{PaCO}_{2}\right)\right.$
$\left.-\left(1.34 \times \mathrm{Hb} \times \mathrm{SaO}_{2}+0.0031 \times \mathrm{PaO}_{2}\right)\right] /\left[1.34 \times \mathrm{Hb} \times \mathrm{SaO}_{2}\right.$
$+0.0031 \times\left(713-\mathrm{PaCO}_{2}\right)-\left(1.34 \times \mathrm{Hb} \times \mathrm{S}_{\mathrm{v}} \mathrm{O}_{2}+0.0031 \times\right.$
$\mathrm{P}_{\mathrm{v}} \mathrm{O}_{2}$)]

Supplement II

Randomization lists

Summary

(I) Randomization algorithm: random sorting.
(II) Number of groups: 5.
(III) Total sample size: 75.
(IV) Group sample sizes: actual; target.
$\mathrm{P}_{\text {LIP2 }}: 15 ; 15$.
$\mathrm{P}_{\text {LIPS: }}: 15 ; 15$.
$\mathrm{P}_{\text {STAT }}: 15 ; 15$.
$\mathrm{P}_{\text {DYN }}: 15 ; 15$.
$\mathrm{P}_{0}: 15 ; 15$.
(V) References:
(i) Piantadosi S. Clinical Trials: A Methodological Perspective. Hoboken: John Wiley \& Sons, 2005.
(ii) Pocock SJ. Clinical Trials: A Practical Approach. Hoboken: John Wiley \& Sons, 1983.
(iii) Rosenberger WF, Lachin JM. Randomization in Clinical Trials: Theory and Practice. Hoboken: John Wiley \& Sons, 2002.

Subject ID	Group assignment	Largest \% deviation from target	Cumulative sample size [PLura, $\left.\mathrm{P}_{\text {star }}, \mathrm{P}_{\text {Lurs }}, \mathrm{P}_{\text {orw }}, \mathrm{P}_{\mathrm{d}}\right]$
1	$P_{\text {Lup }}$	5.3\%	$[1,0,0,0,0]$
2	$\mathrm{P}_{\text {stut }}$	4.0\%	$[1,0,1,0,0]$
3	$P_{\text {Lups }}$	4.0\%	$[1,1,1,0,0]$
4	Porn	5.3\%	$[1,1,1,1,0]$
5	$P_{\text {Lups }}$	6.7\%	$[1,2,1,1,0]$
6	Porm	8.0\%	$[1,2,1,2,0]$
7	$P_{\text {Lups }}$	10.7\%	[1, 3, 1, 2, 0]
8	Porn	10.7\%	$[1,3,1,3,0]$
9	$P_{\text {Lup }}$	12.0\%	[2, 3, 1, 3, 0]
10	$\mathrm{P}_{\text {Lup }}$	13.3\%	[3, 3, 1, 3, 0]
11	$\mathrm{P}_{\text {stat }}$	14.7\%	[3, 3, 2, 3, 0]
12	$P_{\text {Lup }}$	16.0\%	[4, 3, 2, 3, 0]
13	$\mathrm{P}_{\text {o }}$	10.7\%	[4, 3, 2, , , 1]
14	$\mathrm{P}_{\text {stat }}$	12.0\%	[4, 3, , 3, , , 1]
15	$\mathrm{P}_{\text {o }}$	6.7\%	${ }_{[4,3,3,3,2]}$
16	$\mathrm{P}_{\text {Lup }}$	12.0\%	[$5,3,3,3,2]$
17	$P_{\text {Lfes }}$	10.7\%	[$5,4,3,3,3$ 2]
18	Pur	16.0\%	[6, 4, 3, 3, 2]
19	$P_{\text {Lfes }}$	14.7\%	[6, 5, 3, 3, 2]
20	Porn	13.3\%	[6, 5, 3, 4, 2]
21	Porn	14.7\%	[6, 5, 3, 5, 2]
22	$P_{\text {Lps }}$	16.0\%	$[6,6,3,5,2]$
23	Po	10.7\%	$[6,6,3,5,3]$
24	$\mathrm{P}_{\text {stut }}$	12.0\%	$[6,6,4,5,3]$
25	$\mathrm{P}_{\text {o }}$	6.7\%	$[6,6,4,5,4]$
26	Porn	8.0\%	$[6,6,4,6,4]$
27	Porn	10.7\%	[6, 6, 4, 7, 4]
28	Poxn	16.0\%	[6, 6, 4, 8, 4]
29	P_{0}	14.7\%	[6, 6, 4, 8, 5]
30	$\mathrm{P}_{\text {Lu }}$	13.3\%	[7, , , 4, 8, 5]
31	$\mathrm{P}_{\text {o }}$	14.7\%	[7, 6, 4, 8, 6]
32	Porn	17.3\%	${ }^{[7,6,4, ~ 9, ~ 6] ~}$
33	$P_{\text {Lups }}$	17.3\%	${ }^{[7,7,4, ~ 9, ~ 6] ~}$
34	$\mathrm{P}_{\text {stat }}$	14.7\%	[7, 7, 5, 9, 6]
35	$P_{\text {Lups }}$	13.3\%	${ }^{[7, ~ 8, ~ 5, ~ 9, ~ 6] ~}$
36	Porn	18.7\%	[7, 8, 5, 10, 6]
37	Pown	24.0\%	${ }^{[7,8,5,11,6]}$
38	$\mathrm{P}_{\text {stat }}$	22.7\%	[7, 8, 6, 11, 6]
39	$\mathrm{P}_{\text {stat }}$	21.3\%	${ }^{[7,8,7,11,6]}$
40	$\mathrm{P}_{\text {Lpe }}$	20.0\%	[8, 8, 7, 11, 6]
41	$\mathrm{P}_{\text {stat }}$	18.7\%	[8, 8, 8, 11, 6]
42	$\mathrm{P}_{\text {Lp } 2}$	17.3\%	[9, 8, 8, 11, 6]
${ }^{43}$	$\mathrm{P}_{\text {stat }}$	17.3\%	[9, 8, 9, 11, 6]
44	$P_{\text {Lups }}$	18.7\%	[9, 9, 9, 11, 6]
45	$\mathrm{P}_{\text {stat }}$	20.0\%	$[9,9,10,11,6]$
46	$\mathrm{P}_{\text {Stut }}$	21.3\%	[9, 9, 11, 11, 6]
47	$\mathrm{P}_{\text {o }}$	16.0\%	[9, 9, 11, 11, 7]
48	$P_{\text {Lps }}$	17.3\%	[9, 10, 11, 11, 7]
49	Po	12.0\%	[9, 10, 11, 11, 8]
50	$P_{\text {Lups }}$	13.3\%	[9, 11, 11, 11, 8]
51	P_{0}	8.0\%	[9, 11, 11, 11, 9]
52	$P_{\text {Lups }}$	10.7\%	[9, 12, 11, 11, 9]
53	Po	10.7\%	[9, 12, 11, 11, 10]
54	Plps	14.7\%	[9, 13, 11, 11, 10]
55	Poxn	13.3\%	[9, 13, 11, 12, 10]
56	$\mathrm{P}_{\text {ur }}$	12.0\%	[10, 13, 11, 12, 10]
57	Po	10.7\%	[10, 13, 11, 12, 11]
58	$P_{\text {Lup }}$	9.3\%	[11, 13, 11, 12, 11]
59	$\mathrm{P}_{\text {stat }}$	8.0\%	[11, 13, 12, 12, 11]
60	Porn	6.7\%	[11, 13, 12, 13, 11]
61	$\mathrm{P}_{\text {Lp }}$	8.0\%	[12, 13, 12, 13, 11]
62	$P_{\text {Lup }}$	9.3\%	[13, 13, 12, 13, 11]
63	P_{0}	4.0\%	[13, 13, 12, 13, 12]
64	$\mathrm{P}_{\text {stat }}$	5.3\%	[13, 13, 13, 13, 12]
65	$P_{\text {Lups }}$	6.7\%	[13, 14, 13, 13, 12]
66	$\mathrm{P}_{\text {Lp }}$	8.0\%	[14, 14, 13, 13, 12]
67	$\mathrm{P}_{\text {Lup }}$	10.7\%	[15, 14, 13, 13, 12]
68	$\mathrm{P}_{\text {stat }}$	10.7\%	[15, 14, 14, 13, 12]
69	$P_{\text {Lups }}$	12.0\%	[15, 15, 14, 13, 12]
70	Pown	13.3\%	[15, 15, 14, 14, 12]
71	P_{0}	8.0\%	[15, 15, 14, 14, 13]
72	Porn	9.3\%	[15, 15, 14, 15, 13]
73	$\mathrm{P}_{\text {stat }}$	10.7\%	[15, 15, 15, 15, 13]
74	Po	5.3\%	[15, 15, 15, 15, 14]
75	P_{0}	0.0\%	[15, 15, 15, 15, 15]

