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Appendix 1: Image preprocessing

Before texture feature extraction, image preprocessing 
is necessary because of different scan parameters and 
irrelevant information in the images will influence the 
texture feature extraction process. The involved three 
preprocessing procedures are as follows:

•	 Wavelet band-pass filtering is used to prevent the 
noise in ROIs from interfering with the texture 
information. This operation is performed by utilizing 
various weights to band-pass sub-bands (LHL, LHH, 
LLH, HLL, HHL, and HLH) of tumor region to obtain 
different information in wavelet domain. Ratios of 
1/2, 2/3, 1, 3/2, and 2 are implemented.

•	 Isotropic resampling is for maintaining rotation 
invariance ensuring the pixel and slice thickness of 
th1-e ROI are fixed and same. Different isotropic 
voxel sizes of 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 
and initial in-plane resolution (denoted as ‘in-pR’) 
are tested in this work. For example, if the desired 
parameter is set to 5 mm, the volume with the size  
5.5 mm × 5.5 mm × 4.5 mm is isotropically resampled 
to 5 mm × 5 mm × 5 mm. 

•	 Before computing the texture features, the intensity 
range is quantized to a specific number of gray levels 
N. Quantization of gray level aims to compress 
or extend the intensity ranges to the specified 
intensity ranges because of the fact that all higher-
order features involve a distance parameter which 
normalizes images with different attenuation values. 
This process maps the voxel values to a finite set 

{ : 1,2,..., }kr r R k N= ∈ = of reconstruction levels by 
defining a set { : 1,2,..., 1}kt t R k N= ∈ = + of decision 
levels. Quantization algorithm and number of gray 
level are the two important parameters in this process. 
In this work, we test two quantization algorithms, 
Equal-probability and Lloyd-Max. Equal-probability 
quantization attempts to define decision thresholds 
in the volume, then the reconstructed level rk has 
the same quantized number of voxels for all gray 
levels, nevertheless Lloyd-Max attempts to minimize 
the mean-squared quantization error of output. 
The number of gray levels of 8, 16, 32, and 64 are 
implemented in our experiments.

Appendix 2: Relief algorithm 

After feature extraction, a linear normalization operator 

minimum-maximum method is firstly used to eliminate 
the magnitude of features and negative effects of large 
magnitude difference. The formula is as follows and F 
represents features:
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High-dimension features always contain redundant 
features and result in overfitting for classification task. 
Consequently, feature selection is necessary for acquiring 
the most remarkable features. Relief (Relevant feature) 
is a filtering operator that designs a relevant statistic to 
measure the importance of each feature. This statistic 
is a vector, whose every component corresponds to an 
initial feature, and the importance of each feature subset 
depends on the sum of relevant statistics. Given a training 
case xi, it firstly searches for the nearest neighbor x(i,nh) 
in the homogeneous samples, which is called “near-
hit”. Then searches for the nearest neighbor x(i ,nm) 
in the heterogeneous samples, which is called “near-
miss”. Homogeneous means these samples are from the 
same category and heterogeneous is the opposite. The 
importance of the feature j is measured by the following 
relevant statistic:
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where j
ax denotes the feature j  of  in the case xa, 

and ( , )j j
a bdiff x x denotes as the following:

( , ) -=j j j j
a b a bdiff x x x x 	 [3]

According to formula [3], if the distance between xi and 
its near-hit x(i,nh) is more closer than the distance between 
xi and its near-miss x(i,nm), it indicates that the feature j is 
positive to classification. On the contrary, if the distance 
between xi and its near-hit x(i,nh) is farther than the distance 
between xi and its near-miss x(i,nm), it means that the feature 
j is negative to classification. Finally, average value of the 
estimated results is computed based on different samples 
and it can get the relevant statistics component of every 
feature. The larger value indicates the feature is more 
important. After that, first k features subset can be selected 
for classification.
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Figure 1 The architecture of the proposed CNN for deep feature extraction. Note: “Conv” denotes Convolutional layer; the numbers 
follow “Conv” represents the specific layer of convolution; “Pool” denotes pooling layer; the numbers follow “Pool” represents the specific 
layer of pooling; “Fc” denotes fully connected layer.
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Table S1 Different kernel functions for kernel fusion

Kernel Kernel fusion function Parameters
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Note: v =1, 2, 3, 4 responds to the radiomics features on T2 FLAIR and T1ce, deep features on T2 FLAIR and T1ce, respectively; Xi and 

Xj are the representation of the i-th and j-th training data; σ, d, β, θ are hyper-parameters determined on experiments; D is the distance 

function between two objects; F is the basic kernel function between two objects; where k represents the k-th feature in the feature vector 

Xi and Xj; N is the dimension of image features.



© Annals of Translational Medicine. All rights reserved. http://dx.doi.org/10.21037/atm-20-4076

Table S2 Performance of CNN structure with different parameters on internal validation cohort

Kernel size Stride Activation Pooling type AUC (T2 FLAIR) AUC (T1ce)

2×2×2 1 Relu Average 0.81 (0.78, 0.83) 0.82 (0.80, 0.84)

3×3×3 1 Relu Average 0.76 (0.74, 0.78) 0.80 (0.78, 0.82)

4×4×4 1 Relu Average 0.80 (0.77, 0.81) 0.76 (0.74, 0.78)

5×5×5 1 Relu Average 0.76 (0.73, 0.78) 0.75 (0.73, 0.77)

2×2×2 1 Relu Average 0.81 (0.78, 0.83) 0.82 (0.80, 0.84)

2×2×2 2 Relu Average 0.78 (0.76, 0.80) 0.80 (0.78, 0.82)

2×2×2 1 Relu Average 0.81 (0.78, 0.83) 0.82 (0.80, 0.84)

2×2×2 1 LeakyRelu Average 0.77 (0.75, 0.79) 0.80 (0.78, 0.82)

2×2×2 1 Sigmoid Average 0.76 (0.74, 0.78) 0.78 (0.76, 0.80)

2×2×2 1 Relu Max 0.77 (0.74, 0.79) 0.80 (0.78, 0.82)

2×2×2 1 Relu Average 0.81 (0.78, 0.83) 0.82 (0.80, 0.84)

Table S3 The selected radiomics features on T1ce

Feature Wavelet band-pass filtering Isotropic voxel size Quantization algorithm Number of gray level

GLCM/Sum Average 2 In-pR Equal 16

GLCM/Sum Average 2 1 mm Equal 16

GLCM/Sum Average 2 In-pR Equal 8

GLSZM/LGRE 2/3 3 mm Equal 64

GLCM/Variance 2 2 mm Equal 32

GLCM/Auto Correlation 2 1 mm Equal 16

GLSZM/LGRE 1/2 4 mm Equal 64

GLCM/Sum Average 2 1 mm Equal 8

GLSZM/LGRE 2 3 mm Equal 32

GLCM/Variance 2 1 mm Equal 8

GLCM/Auto Correlation 2 1 mm Equal 8

GLSZM/LGRE 2 In-pR Equal 64

GLSZM/LGRE 1/2 4 mm Equal 32

GLCM/Sum Average 2 2 mm Equal 16

GLSZM/LGRE 1/2 5 mm Equal 32

GLSZM/LGRE 2 5 mm Equal 16

GLCM/Sum Average 1/2 1 mm Equal 16

GLCM/Sum Average 2 2 mm Equal 8

GLCM/Variance 2 1 mm Equal 16

Note: “In-pR” denotes initial in-plane resolution.
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Table S4 The selected radiomics features on T2 Flair

Feature Wavelet band-pass filtering Isotropic voxel size Quantization algorithm Number of gray level

GLSZM/LGRE 2 4 mm Equal 64

GLSZM/LGRE 3/2 5 mm Equal 32

GLSZM/LGRE 2 4 mm Equal 32

GLSZM/LGRE 3/2 5 mm Equal 32

GLSZM/SRLGE 3/2 5 mm Equal 64

GLSZM/LGRE 3/2 5 mm Equal 64

GLSZM/SRLGE 2 4 mm Equal 64

GLSZM/LGRE 3/2 3 mm Equal 64

GLSZM/LGRE 2 3 mm Equal 64

GLSZM/LGRE 2 2 mm Equal 64

GLSZM/LGRE 2 3 mm Equal 32

GLSZM/SRLGE 3/2 5 mm Equal 64

GLSZM/LGRE 3/2 2 mm Equal 64

GLSZM/LGRE 2 2 mm Equal 32

GLSZM/SRLGE 3/2 5 mm Equal 32

GLSZM/LGRE 3/2 4 mm Equal 32

GLSZM/SRLGE 2 3 mm Equal 64

GLSZM/LGRE 2 1 mm Equal 64

GLSZM/LGRE 3/2 5 mm Equal 32

Note. “in-pR” denotes initial in-plane resolution.

Table S5 The selected deep learning features on T2 Flair and T1ce

Selected feature (i-th feature of 13824 deep features)

T2 Flair 11439, 2353, 13024, 1146, 3450, 2737, 667, 3834, 273, 6040, 10838, 5265, 1530, 5656, 1432, 4881, 938, 7415, 3428

T1ce 68, 5072, 2391, 452, 2454, 2775, 168, 5060, 2756, 1, 4695, 385, 4676, 80, 4688, 2372, 471, 87, 1325

Table S6 The best performances of different kernel types with mixing coefficients on internal validation cohort

Kernel Coefficients AUC Sensitivity (%) Specificity (%)

Linear 1 2 3 40.40, 0.10, 0.10, 0.40ω ω ω ω= = = = 0.90 (0.77-0.97) 81 (17/21) 92 (24/26)

Polynomial
1 2 3 40.40, 0.10, 0.10, 0.40ω ω ω ω= = = = 0.92 (0.80-0.98) 81 (17/21) 88 (23/26)

Sigmoid 1 2 3 40.35, 0.10, 0.15, 0.40ω ω ω ω= = = = 0.91 (0.79-0.97) 86 (18/21) 85 (22/26)

Gaussian 1 2 3 40.40, 0.30, 0.10, 0.20ω ω ω ω= = = = 0.93 (0.82-0.99) 86 (18/21) 88 (23/26)

Intersection 1 2 3 40.35, 0.10, 0.20, 0.35ω ω ω ω= = = = 0.91 (0.80-0.98) 86 (18/21) 85 (22/26)

Chi-square 1 2 3 40.35, 0.15, 0.15, 0.35ω ω ω ω= = = = 0.94 (0.85-0.99) 86 (18/21) 92 (24/26)


