Supplementary

Appendix 1 Detailed descriptions of the statistical methodology

LASSO and 10-fold cross-validation was used to select and sort the statistically significant MVI related features in the training cohort. A log partial likelihood minimization was carried out under the constraint of the sum of the absolute values of the parameters multiplied by a constant (44).

 $\hat{\beta} = \arg\min l(\beta), \ subject \ to \sum |\beta_j| \le t$

where $\hat{\beta}$ is parameter obtained through LASSO algorithm, $l(\beta)$ denotes the log-partial likelihood in the logistic regression model, and t >0 represents a constant. The LASSO algorithm automatically selects variables and shrinks some coefficients and reduces others to exactly 0 via the absolute constraint. In this study, the constant t was set at 0.01, and 8 nonzero coefficients were selected through LASSO algorithm for the present model (45).

Appendix 2 Analysis of DCA

The DCA was conducted to evaluate the clinical utility of this nomogram. The clinical utility of different MVI prediction models mentioned in this manuscript were compared and assessed through DCA after analyzing the

Table S1 Major packages of R software used in this study

net benefits within the range of threshold probabilities (46). The theory and computational method of the DCA is illustrated with the following equation:

$$\frac{a-c}{d-b} = \frac{1-Pt}{Pt}$$

When comparing two models for predicting or diagnosing a disease, b indicates net benefit from treated patients based on the model and d indicates net benefit from treating all patients. a-c represents net benefit for the untreated, which also can be interpreted as number of avoidable treatments. Pt is the threshold probability.

References

- Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 2007;26:5512-28.
- 45. Jiang M, Li C, Tang S, et al. Nomogram Based on Shear-Wave Elastography Radiomics Can Improve Preoperative Cervical Lymph Node Staging for Papillary Thyroid Carcinoma. Thyroid 2020;30:885-97.
- Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 2006;26:565-74.

Functions	R package		
Data Cleansing	fastStat		
LASSO regression	glmnet		
Univariate logistic regression analysis	glm		
ROC and AUC	pROC		
For ROC analysis to determine optimal cutoff value	OptimalCutpoints		
Plot calibration curves	rms		
DCA	rmda		
NRI and IDI	PredictABEL		

Table S2 Univariate Logistic	Regression	Analysis of MVI Pr	resence in the Training Cohort

Variable	P Value	OR	(95% CI)	
Age, y	0.001	0.977	0.964–0.991	
Gender, male vs. female	0.076	1.445	0.962-2.17	
TB, >20.4 <i>vs</i> . ≤20.4 µmol/L	0.899	0.967	0.58–1.615	
DB, >6.8 <i>vs.</i> ≤6.8 µmol/L	0.683	1.077	0.754–1.54	
ALB, >35–55 <i>vs.</i> ≤35–55 g/L	0.945	1.025	0.502-2.096	
ALT, >50 <i>v</i> s. ≤50 U/L	0.75	1.069	0.71–1.61	
AST, >40 <i>vs.</i> ≤40 U/L	0.004	1.774	1.198–2.627	
ALP >125 <i>vs.</i> ≤125 U/L	0.001	4.435	2.502-7.861	
GGT >60 <i>vs.</i> ≤60 U/L	0.001	1.641	1.212-2.222	
TC, >5.2 <i>vs</i> . ≤5.2 mmol/L	0.063	1.518	0.978–2.355	
TG, >60 <i>vs.</i> ≤60 U/L	0.012	1.772	1.135–2.767	
ApoA1, >1.7 <i>vs.</i> ≤1.7 g/L	0.194	0.751	0.488-1.157	
ApoB1, >1.55 <i>vs.</i> ≤1.55 g/L	0.023	4.505	1.229–16.511	
ApoE, >53 <i>vs.</i> ≤53 mg/L	0.465	1.144	0.798–1.639	
Cr, >115 <i>vs.</i> ≤115 µmol/L	0.274	0.521	0.162–1.676	
Glu, >5.6 <i>vs.</i> ≤5.6 mmol/L	0.1	1.335	0.946-1.883	
AFP, ng/ml				
20–400 <i>vs.</i> ≤20	0.003	1.725	1.2-2.481	
≥400 <i>vs.</i> 20–400	0.001	4.257	2.886-6.279	
CEA, >5vs. ≤5 ng/ml	0.171	0.718	0.446-1.154	
CA199, >34 <i>vs.</i> ≤34 U/ml	0.214	1.274	0.869-1.868	
PLT, ≤125 <i>vs.</i> >125 10 ^{^9} /L	0.351	0.863	0.633–1.176	
PT, >13 vs. ≤13 seconds	0.651	1.14	0.647-2.009	
PIVKA–II, mAU/ml				
40-400 vs. ≤400	0.001	2.179	1.537-3.088	
≥400 <i>vs.</i> 20–400	0.001	5.301	3.417-8.223	
HBV DNA load, IU/ml				
>10 ^{^4} vs. ≤10 ^{^4}	0.152	1.253	0.92-1.705	
HCV, Yes <i>vs.</i> No	0.845	1.318	0.082-21.156	
Child–Pugh class, A vs. B	0.623	1.542	0.234-2.223	
No. of tumors, Solitary vs. Multiple	0.027	1.632	1.057–2.519	
Pseudo-capsule				
III-defined vs. well-defined	0.004	0.645	0.476-0.873	
Tumor diameter, cm	0.001	1.856	1.54–2.238	
Cirrhosis, Yes vs. No	0.697	0.942	0.699–1.27	
Tumor boundary				
non–smooth vs. smooth	0.247	0.827	0.6–1.141	
tumor growth pattern				
irregular vs. regular	0.001	2.627	1.935–3.566	
Intratumor inhomogeneous				
present vs. absent	0.001	2.501	1.718–3.641	
Arterial enhancement				
hypo–/mild vs. hyper–	0.346	2.23	0.774-3.42	
Washout, absent vs. present	0.127	1.02	0.33–1.26	

Figure S1 The DCA analysis of the nomogram, pathological features model, resection margin model in recurrence prediction of HCC in the training (A) and validation cohort (B). The DCA shows that present nomogram derived from this study (red curve) predicting recurrence of HCC provides a greater benefit than the pathological features model (green curve) and resection margin model alone (orange curve) in previous studies within 0 to 0.8 threshold probability.

Table S3 Evaluation of the models with respect to NRI and IDI							
Characteristic	Training cohort			Validation cohort			
	Categorical NRI (95% CI)	Continuous NRI (95% CI)	IDI (95% CI)	Categorical NRI (95% CI)	Continuous NRI (95% CI)	IDI (95% CI)	
The combined model, vs.							
Hematological test model	0.379 (0.284 –0.474)	0.7954 (0.633–0.958)	0.152 (0.119–0.184)	0.28 (0.13–0.43)	0.64 (0.381–0.898)	0.103 (0.06–0.146)	
Resection margin model	0.337 (0.239–0.435)	0.719 (0.553–0.884)	0.125 (0.096–0.155)	0.367 (0.205–0.529)	0.817 (0.568–1.067)	0.0.214 (0.157–0.27)	
P value	P<0.001*** (both)	P<0.001*** (both)	P<0.001*** (both)	P=0.001***, (both)	P<0.001*** (both)	P<0.001*** (both)	

*: P<0.05; **: P<0.01; ***: P<0.001