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Technical details of automatic self-supervised 
feature extraction

Data pre-processing

Assume X=(x1,x2,…,xm) denotes one input video sample with m 
frames, where xi is the ith frame. For an input video frame x, we 
first randomly crop a sub-area, and then transform them into z1 
and z2 by different data transformations:

zk=T(x),k=1,2 [1]
where T() includes random color distort and Gaussian blur. 
After data transformation, each zk is divided into 3×3=9 tiles 
while leaving a gap (about 6 pixels) between two adjacent tiles 

as { }1 2 9
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Network architecture

A Siamese network with 9 (which is the number of tiles) 
sharing weight branches is adopted to solve the proxy task. The 
backbone network φ is 2D ResNet-34 excluding the last fully-
connected layer. We can obtain feature representation as:
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Structure recovery

We formulate a proxy task which aims to rearrange and recover 
the structure. We first yield all the permutations (P) of tiles, 
i.e., P=(p1,p2,…,p9!) and iteratively select H (H≤9!) permutations 
with the largest Hamming distance from P, i.e., P^'=(p1,p2,…,pH). 
Then the 9 tiles of zk are rearranged according to a random 
selected p from permutation pool P’. Therefore, the network 
is trained to identify the selected permutation. The feature fk' 

can be obtained by feature concatenation of ( )1 2 9
, , ,k k kf f f⋅ ⋅ ⋅ ,  

then the predicted possibilities l of each permutation can be  
generated via:

( )kl g f ′= −  [3]

where g represents a fully-connected layer. Assume the index 
of chosen permutation for each zk is y, the loss (Lsr) can be 
defined as:
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Color transform toleration

We design another proxy task to force the network more 
concentrate on color-correlated information. Assume a subset 

{x}, which may belong to different videos, is sampled in each 
mini-batch, the feature representations in each mini-batch 

are { jikf ; i=1,2…,N,k=1,2; j=1,2,…,9}, where N is the size of 
mini-batch. The f generated from the same x is regarded as a 
positive pair, and vice versa. The network is force to minimize 
the difference between positive pairs and enlarge the negative 
ones.
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where C(x,y)=exp
Tx y
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, and τ is a temperature parameter.

Objective

Our total loss function of our SSL feature extraction can be 
defined as:

L=Lsr+Lc [6]

MR jet recognition and segmentation

Feature encoding

Our backbone model φ is then transferred to downstream tasks, 
namely MR jet recognition task and segmentation task (shown 
in Figure 2B). Since X may consist of several cardiac cycles, we 
let E=(e1,e2,…,em) denotes a one-hot ground truth indicating 
the max MR jet area frame, and Y=(y1,y2,…,ym) denotes the 
segmentation ground truth. The segmentation ground truths 
of those desirable frames are acquired, where ei=1, and ei=0 
vice versa. We first crop a central area of each frame and then 
obtain feature representations via:

fi=φ(xi),i=1,2,…,m [7]

The max MR frame recognition

The {fi} are then concatenated into f’ along the time dimension. 
A 3D decoder Dr, which consists of two 3D convolution 
layer, one 2D pooling layer, and one fully-connected layer, is 
employed to generate predicted label E’={e1',e2',…,em'}. The loss 
function is represented as:
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The max MR frame segmentation

We integrate the information of those previous frames, which 
lack of segmentation ground truth, by introducing the long 
short-term memory (LSTM) architecture to explicitly promote 
the exploring of all video frames for better segmentation 
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reconstruction. Assume f_k is one of the max MR frames. Then 
the integrated feature is:

fk'=LSTM(f1,f2,…,fk-1,fk) [9]
Then fk' is fed into a 2D decoder Ds with skip-connection 

to obtain predicted segmentation yk'. Segmentation loss Ls is 
generated via dice loss.
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where I is an indicator function evaluating to 1 if e_i≠0, and 
vice versa.

Objective

Our total objective of multi-task framework is:
L=Lr+Ls [11]


