Supplementary

Technical details of automatic self-supervised feature extraction

Data pre-processing

Assume $X=(x_1, x_2, ..., x_m)$ denotes one input video sample with m frames, where x_i is the i^{tb} frame. For an input video frame x, we first randomly crop a sub-area, and then transform them into z_1 and z_2 by different data transformations:

 $z_k = T(x), k=1,2$ [1] where T() includes random color distort and Gaussian blur. After data transformation, each z_k is divided into $3 \times 3=9$ tiles while leaving a gap (about 6 pixels) between two adjacent tiles as $z_k = \{z_k, z_{k_1}, \dots, z_{k_n}\}$

Network architecture

A Siamese network with 9 (which is the number of tiles) sharing weight branches is adopted to solve the proxy task. The backbone network φ is 2D ResNet-34 excluding the last fully-connected layer. We can obtain feature representation as:

$$f_{k_j} = \varphi(z_{k_j}), j = 1, 2, \dots, 9; k = 1, 2$$
 [2]

Structure recovery

We formulate a proxy task which aims to rearrange and recover the structure. We first yield all the permutations (P) of tiles, i.e., $P=(p_1, p_2, ..., p_{9l})$ and iteratively select H ($H \le 9$!) permutations with the largest Hamming distance from P, i.e., $P^{\wedge'}=(p_1, p_2, ..., p_{H})$. Then the 9 tiles of z_k are rearranged according to a random selected p from permutation pool P'. Therefore, the network is trained to identify the selected permutation. The feature f_k' can be obtained by feature concatenation of $(f_{k_1}, f_{k_2}, \dots, f_{k_9})$, then the predicted possibilities l of each permutation can be generated via:

$$l = -g\left(f_{k}^{\prime}\right)$$
^[3]

where g represents a fully-connected layer. Assume the index of chosen permutation for each z_k is y, the loss (L_{sr}) can be defined as:

$$Lsr = -\sum_{i=1}^{H} y_i \log l_i = \sum_{k=1}^{2} \sum_{i=1}^{H} y_{ki} \log l_{k_i}$$
[4]

Color transform toleration

We design another proxy task to force the network more concentrate on color-correlated information. Assume a subset {*x*}, which may belong to different videos, is sampled in each mini-batch, the feature representations in each mini-batch are { f_{ik_j} ; *i*=1,2...,*N*,*k*=1,2; *j*=1,2,...,9}, where *N* is the size of mini-batch. The *f* generated from the same *x* is regarded as a positive pair, and vice versa. The network is force to minimize the difference between positive pairs and enlarge the negative ones.

$$L_{c} = -\log \sum_{i=1}^{N} \sum_{j=1}^{9} \frac{c(f_{i1_{j}}, f_{i2_{j}})}{\sum_{p=1, p \neq i, k'=k^{*}=1, 2}^{N} c(f_{pk_{j}'}, f_{pk_{j}'})}$$
[5]

where $C(x,y)=\exp\left(\frac{x^{T}y}{\tau \|x\|\|y\|}\right)$, and τ is a temperature parameter.

Objective

Our total loss function of our SSL feature extraction can be defined as:

$$L=L_{sr}+L_c$$
[6]

MR jet recognition and segmentation

Feature encoding

Our backbone model φ is then transferred to downstream tasks, namely MR jet recognition task and segmentation task (shown in *Figure 2B*). Since X may consist of several cardiac cycles, we let $E=(e_1,e_2,...,e_m)$ denotes a one-hot ground truth indicating the max MR jet area frame, and $Y=(y_1,y_2,...,y_m)$ denotes the segmentation ground truth. The segmentation ground truths of those desirable frames are acquired, where $e_i=1$, and $e_i=0$ vice versa. We first crop a central area of each frame and then obtain feature representations via:

$$f_i = \varphi(x_i), i = 1, 2, \dots, m$$
 [7]

The max MR frame recognition

The $\{f_i\}$ are then concatenated into f' along the time dimension. A 3D decoder D_r , which consists of two 3D convolution layer, one 2D pooling layer, and one fully-connected layer, is employed to generate predicted label $E'=\{e_1', e_2', ..., e_m'\}$. The loss function is represented as:

$$L_{r} = ||E' - E||^{2} = ||D_{r}(f') - E||^{2} = \sum_{i=1}^{m} ||e_{i}' - e_{i}||^{2}$$
[8]

The max MR frame segmentation

We integrate the information of those previous frames, which lack of segmentation ground truth, by introducing the long short-term memory (LSTM) architecture to explicitly promote the exploring of all video frames for better segmentation reconstruction. Assume f_k is one of the max MR frames. Then the integrated feature is:

where I is an indicator function evaluating to 1 if $e_i \neq 0$, and vice versa.

$$f_k' = LSTM(f_1, f_2, \dots, f_{k-1}, f_k)$$
 [9]

Then f'_k is fed into a 2D decoder D_s with skip-connection to obtain predicted segmentation y'_k . Segmentation loss L_s is generated via dice loss.

$$L_{s} = \sum_{i=1}^{m} I_{e_{i} \neq 0} Dice(y_{i}', y_{i}) = \sum_{i=1}^{m} I_{e_{i} \neq 0} Dice(D_{s}(f_{k}'), y_{i})$$
[10]

Objective

Our total objective of multi-task framework is:

$$L=L_r+L_s$$
 [11]