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Participants

The inclusion criteria for participants with mild cognitive impairment (MCI) were as follows: (I) participants diagnosed with 
MCI at the time of data collection; (II) magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission 
tomography (18F-FDG PET) scans collected for each participant. Participants’ data were retrieved from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (cohort A) and the Department of Neurology at Huashan Hospital in 
Shanghai, China (cohort B), and participants in both cohorts were categorized into 2 groups: an MCI nonconverter (MCI-
nc) group, whose MCI did not convert to Alzheimer’s disease (AD), and an MCI-converter (MCI-c) group, whose MCI did 
convert to AD. Cohort A consisted of 168 MCI-cs and 187 MCI-ncs, while cohort B comprised 10 MCI-cs and 12 MCI-ncs. 
Cohort A also contained the MRI and 18F-FDG PET data of 94 healthy control participants obtained at 2 points in time with 
an average interval of 2 years. The inclusion criteria for the healthy control participants were as follows: (I) a Mini-Mental 
State Examination (MMSE) score of between 24 and 30; (II) a clinical dementia rating (CDR) of 0; (III) and no diagnosis of 
depressions, MCI, or dementia. This data set was used to perform a stability analysis on the radiomic features.

Cohort B comprised 10 MCI-cs and 12 MCI-ncs. Participants in this cohort had both MRI and 18F-FDG PET imaging 
data. MCI-ncs remained clinically stable, while MCI-cs converted to Alzheimer’s disease (AD) during the average follow-up 
period of 24.5±9.6 months. MCI was diagnosed according to previously published criteria (1).

Acquisition protocol

ADNI (cohort A)

Detailed information on the structural MRI and 18F-FDG PET data acquisition for cohort A can be obtained by visiting 
the image protocol column of the ADNI dataset on the official website of the ADNI (http://adni.loni.usc.edu/). For the 
participants in the present study, 18F-FDG PET images were acquired in a resting state 30-35 minutes after the injection of 
185±18.5 MBq FDG.

Huashan Hospital (cohort B)

Structural MRI
MRI data for all participants in cohort B were obtained using a 3T MR750 scanner (General Electric Company, Boston, 
MA, USA). An inversion recovery prepared fast spoiled gradient recalled sequence was used to obtain T1 weighted, 
high-resolution, 3-dimensional (3D) anatomical brain images. The scanning range was from the cranial crest to the 
occipital foramen. The scan parameters were as follows: repetition time (TR) =11.1 ms, echo time (TE) =5.0 ms, flip 
angle =20°, matrix size =256×256, voxel size = 1×1×1 mm3, field of view (FOV) =240 mm2, slice thickness = 1.0 mm;  
146 slices without slice gap, and transverse acquisition.

http://adni.loni.usc.edu/
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18F-FDG PET
A Siemens Biograph 64 HD PET/CT scanner was used to perform 18F-FDG PET scanning in 3D mode at resting state  
(1.5 min/bed, 5 bed positions). All participants were required to have been fasting for at least 6 hours before the examination. 
Each participant received an intravenous injection of 185 MBq ±37 FDG and rested in a quiet and dark environment for 
45 minutes prior to the scan. Before PET scanning, we used low-dose CT transmission scanning to reduce the effects of 
attenuation.

Data preprocessing protocol

Data preprocessing for the PET and MRI images was performed using the Statistical Parametric Mapping  
12 package (SPM12, the Wellcome Department of Neurology, London U.K.) in MATLAB 2016b (MathWorks Inc., Natick, 
MA, USA).

First, dcm2nii software (http://www.nitrc.org/projects/dcm2nii/) was used to convert digital imaging and communications 
in medicine (DICOM) files to neuroimaging informatics technology initiative (NIFTI) files. Second, each original 18F-FDG 
PET scan was registered to a corresponding original structural MRI scan and corrected for partial volume effect (PVE) using 
the voxel-wise PVE method. Then, the MRI images were segmented using the unified segmentation method. Next, the 
forward parameters were estimated during the unified segmentation, and the original MRI scan, gray matter (GM) binary 
mask, and registered PET image were registered to the Montreal Neurological Institute (MNI) stereotaxic template. Finally, 
the normalized PET scans were smoothed.

18F-FDG PET: each original structural MRI scan was used to register a corresponding original 18F-FDG PET scan. PVE 
algorithms were used to correct PVE in the PET scans, using the PETPVE12 toolbox, after a voxel-wise method defined 
by Muller-Gartner et al. (2). Our study-specific settings included the specification of an isotropic PSF of 6 mm. The same 
transformation parameters were used to normalize the registered PET scan to the MNI template. Finally, an isotropic 
gaussian kernel of 8 mm was used to smooth the normalized PET scans to increase signal-to-noise ratios. Some of the 
processing results are shown as examples in Figure S1.

MRI: the unified segmentation method was used to segment MRI images into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) tissue probability maps. Then, the original MRI scan and GM binary mask were registered to the 
MNI stereotaxic template using the forward parameters. Some processing results are shown as examples in Figure S1. 

Individual GM binary masks were derived from 50% GM suprathreshold voxels plus those whose GM probability 
exceeded that of WM and CSF. The final positioning of the brain regions is shown in Figure S2. Individual GM binary masks 
were used to mask the corresponding normalized MRI, and the smoothed 18F-FDG PET scans in the MNI space.

Feature extraction

Texture features [9 from the gray-level co-occurrence matrix (GLCM), 13 from the gray-level run-length matrix (GLRLM), 
13 from the gray-level size zone matrix (GLSZM), and 5 from the neighborhood gray-tone difference matrix (NGTDM)] 
were used to measure tissue heterogeneity by quantitatively describing the spatial distribution of intensities within the regions 
of interest (ROIs). The first-order intensity features, including variance, skewness, and kurtosis, were calculated according to 
the intensity distribution of each ROI. All texture features were calculated using 3D analysis (26 neighborhoods). For each 
texture matrix, only 1 comprehensive texture matrix was calculated by simultaneously considering the adjacent attributes of 
voxels in 13 directions of 3D space. At the same time, considering discretization length differences, the 6 voxels at a distance 
of 1 voxel, the 12 voxels at a distance of √2  voxels, and the 8 voxels at a distance of √3 voxels around the center voxels were 
treated differently in the calculation of the matrices (3). 

The calculation of the texture matrices was dependent on the gray level quantization values since they quantify the 
relationship between the levels of gray. A reasonable gray level quantization value shortened the calculation time of the 
feature matrix and improve the signal-to-noise ratio of the texture outcome. Following previous texture analysis research, 
we selected the number of gray levels (i.e., the dynamic range) as 32 and 64. Wavelet band-pass filtering highlighted detailed 
information in images at different spatial frequencies. When performing wavelet band-pass filtering, we first performed 

http://www.nitrc.org/projects/dcm2nii/
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wavelet decomposition in ROIs on the images in 8 directions (LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH), and 
then defined a coefficient R, indicating the ratio of the weight applied to band-pass sub-bands (LLH, HLH, LHL, HLL, 
HHL, and LHH) compared to the weight applied to low-frequency and high-frequency sub-bands (LLL and HHH). By 
adjusting R, and then performing the inverse wavelet transformation, a transformed ROI image was obtained, emphasizing 
detailed information at different spatial frequencies. Following previous research (4), we extracted wavelet features at 5 spatial 
frequencies, with R values of 1/2, 2/3, 1 (without wavelet filtering), 3/2, and 2. After selecting the gray level quantization 
range and wavelet band-pass filter weight (R), we extracted the same number of first-order intensity features and texture 
features for the processed image.

Finally, we extracted 430 radiomic features from each ROI for each participant’s MRI and 18F-FDG PET data. For 
participants with both MRI and PET scans, a total of 68,800 features were extracted (430×80×2 =68,800). The most basic 
features in each ROI included first-order intensity features (n=3) and textural features (n=40). By selecting different feature 
extraction parameters, more features were obtained. We combined different wavelet filter weights (5 levels) and quantization 
of gray levels (to 2 levels) to extract the features, with 430 features [(3+40)×5×2 = 430] extracted for each ROI.

Conserved features in different modalities

After removing duplicate features, 16 different conserved features remained. The meanings of these features are as follows: 
the variance feature extracted from the GLCM category is an indicator of dispersion of the unit values around the mean (5); 
the coarseness feature extracted from the NGTDM has been likened to granularity within an image—that is, coarseness is 
higher in images of larger granularity and lower in those with a smaller granularity (6); the contrast and busyness features are 
both derived from the NGTDM and define local texture features by describing the differences between each voxel and the 
neighboring voxels. Contrast relates to the difference between neighboring regions of voxel intensities, and high contrast in 
an image indicates that there is a significant difference in voxel intensity between adjacent voxels. Busyness correlates with 
the change rate between neighborhood intensities weighted by the difference in intensities, and the characteristic of a busy 
texture is that the intensity of adjacent voxels changes rapidly (7).
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Figure S2 Final positioning of brain regions. GM, gray matter; WM, white matter; CSF, cerebrospinal fluid.

Figure S1 An example of the PET and MRI preprocessing results. PET, positron emission tomography; MRI, magnetic resonance imaging; 
GM, gray matter; WM, white matter; CSF, cerebrospinal fluid. 
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Table S1 Conserved features in the different Cox models

Top Times Modality Labeled number Labeled region R Gray level Feature name

(a) Single-modality PET model

1 196 PET 64 SupraMarginal_R 2.00 32 SZHGE

2 194 PET 37 Hippocampus_L 1.50 32 GLV

3 194 PET 39 ParaHippocampal_L 1.00 64 Busyness

4 185 PET 68 Precuneus_R 1.50 64 Correlation

5 181 PET 33 Cingulum_Mid_L 1.50 32 ZP

6 179 PET 33 Cingulum_Mid_L 1.50 32 LZLGE

7 176 PET 67 Precuneus_L 2.00 32 ZSV

8 157 PET 8 Frontal_Mid_R 0.50 32 Skewness

9 144 PET 18 Rolandic_Oper_R 2.00 64 Contrast

10 144 PET 38 Hippocampus_R 1.00 64 Correlation

11 144 PET 68 Precuneus_R 2.00 64 Variance

12 139 PET 34 Cingulum_Mid_R 0.50 64 LZE

13 137 PET 85 Temporal_Mid_L 0.67 64 Contrast

(b) Single-modality MRI model

1 200 MRI 65 Angular_L 0.50 32 RP

2 198 MRI 39 ParaHippocampal_L 2.00 32 Coarseness

3 196 MRI 90 Temporal_Inf_R 2.00 32 Skewness

4 195 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

5 192 MRI 38 Hippocampus_R 0.50 32 ZP

6 165 MRI 13 Frontal_Inf_Tri_L 0.50 64 Skewness

7 163 MRI 37 Hippocampus_L 1.00 64 Coarseness

8 160 MRI 62 Parietal_Inf_R 1.50 32 Busyness

9 156 MRI 23 Frontal_Sup_Medial_L 0.50 64 Contrast

10 153 MRI 62 Parietal_Inf_R 1.00 64 Skewness

11 147 MRI 21 Olfactory_L 1.50 32 Coarseness

12 134 MRI 38 Hippocampus_R 2.00 32 RLN

(c) Dual-modality model

1 197 PET 33 Cingulum_Mid_L 1.50 32 ZP

2 191 PET 68 Precuneus_R 1.50 64 Correlation

3 190 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

4 190 MRI 62 Parietal_Inf_R 1.00 64 Skewness

5 188 PET 64 SupraMarginal_R 2.00 32 SZHGE

6 180 PET 67 Precuneus_L 2.00 32 ZSV

7 179 PET 37 Hippocampus_L 1.50 32 GLV

8 174 PET 39 ParaHippocampal_L 1.00 64 Busyness

9 162 PET 34 Cingulum_Mid_R 0.50 64 LZE

10 155 MRI 90 Temporal_Inf_R 2.00 32 Skewness

11 154 PET 52 Occipital_Mid_R 0.50 64 GLN

12 146 PET 39 ParaHippocampal_L 1.00 32 RP

13 146 PET 68 Precuneus_R 2.00 64 Variance

14 138 PET 38 Hippocampus_R 1.00 64 Correlation

Times: the number of times each feature repeated in the 10-fold cross-validation with 200 repetitions of the model construction, R: 
weights to band-pass subbands in wavelet filtering, gray level: gray level quantization value. SZHGE, small zone high gray-level emphasis; 
GLV, gray-level variance; ZP, zone percentage; LZLGE, large zone low gray-level emphasis; ZSV, zone-size variance; LZE, large zone 
emphasis; RP, run percentage; RLN, run-length nonuniformity; GLN, gray-level nonuniformity.
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Table S2 Crucial image signatures from three image-based models

Top Modality Labeled number Labeled region R Gray level Feature name

1 PET 8 Frontal_Mid_R 0.50 32 Skewness

2 PET 18 Rolandic_Oper_R 2.00 64 Contrast

3 PET 33 Cingulum_Mid_L 1.50 32 ZP

4 PET 33 Cingulum_Mid_L 1.50 32 LZLGE

5 PET 34 Cingulum_Mid_R 0.50 64 LZE

6 PET 37 Hippocampus_L 1.50 32 GLV

7 PET 38 Hippocampus_R 1.00 64 Correlation

8 PET 39 ParaHippocampal_L 1.00 32 RP

9 PET 39 ParaHippocampal_L 1.00 64 Busyness

10 PET 52 Occipital_Mid_R 0.50 64 GLN

11 PET 64 SupraMarginal_R 2.00 32 SZHGE

12 PET 67 Precuneus_L 2.00 32 ZSV

13 PET 68 Precuneus_R 1.50 64 Correlation

14 PET 68 Precuneus_R 2.00 64 Variance

15 PET 85 Temporal_Mid_L 0.67 64 Contrast

16 MRI 13 Frontal_Inf_Tri_L 0.50 64 Skewness

17 MRI 19 Supp_Motor_Area_L 1.00 64 Strength

18 MRI 21 Olfactory_L 1.50 32 Coarseness

19 MRI 23 Frontal_Sup_Medial_L 0.50 64 Contrast

20 MRI 37 Hippocampus_L 1.00 64 Coarseness

21 MRI 38 Hippocampus_R 0.50 32 ZP

22 MRI 38 Hippocampus_R 2.00 32 RLN

23 MRI 39 ParaHippocampal_L 2.00 32 Coarseness

24 MRI 62 Parietal_Inf_R 1.00 64 Skewness

25 MRI 62 Parietal_Inf_R 1.50 32 Busyness

26 MRI 65 Angular_L 0.50 32 RP

27 MRI 90 Temporal_Inf_R 2.00 32 Skewness

Times: the number of times each feature repeated in the 10-fold cross-validation with 200 repetitions of the model construction, R: 
weights to band-pass subbands in wavelet filtering, gray level: gray level quantization value. ZP, zone percentage; LZLGE, large zone low 
gray-level emphasis; LZE, large-zone emphasis; GLV, gray-level variance; RP, run percentage; GLN, gray-level nonuniformity; SZHGE, 
small zone high gray-level emphasis; ZSV, zone-size variance; RLN, run-length nonuniformity.
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