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Figure S1 Structure of dynamic prediction using proportional baselines landmark supermodel. The green circle represents the patients’ 
survival time. The blue circle represents the landmark time points. The red circle represents the two endpoints (Truncation time and 
Censoring time) of the prediction window. Different types of circles overlapping at the same time indicate that the time points occur at the 
same time.

Figure S2 Number of patients in the landmark datasets since the diagnosis of EC in relation to Death Censored status. The green bar shows 
the censored patients in each landmark time point, the red bar shows the deaths in each landmark time point, and the purple dot shows the 
cumulative distribution function (CDF) in each landmark time point.
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Figure S3 The overall survival curves of different factors. The Kaplan-Meier curves of OS were first compared with LR, of which a value 
<0.05 suggested that there were significant differences in survival rates among the different groups. The colored line exhibits the overall 
survival of a group of patients, and the corresponding shaded area is the confidence interval. The proportional hazards assumption was 
also checked by GT, of which a value <0.05 implied that the proportional hazard assumption was not satisfied. The Kaplan-Meier survival 
curves for age at diagnosis, sex, T stage, chemotherapy, and radiotherapy had intersecting evidence, which also implied that the proportional 
hazard assumption was not satisfied in this case. AJCC, American Joint Committee on Cancer; LR, Log-rank test; GT, Grambsch-Therneau 
proportional hazards test.
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Supplemental method I The construction of proportional baselines landmark supermodel

The proportional baselines landmark supermodel (PBLS model) was originated from the Landmark method (landmark 
analysis), a debate on the effect of response to chemotherapy on survival 33 years ago in the first volume, the Journal of 
Clinical Oncology (28). If we count the patients with guarantee time bias (immortal time bias) in the response group, then we 
will underestimate the death rate for responders, overestimate the death rate in the early month for nonresponders (29). So 
Anderson (28) provided an alternative method to consider the guarantee time bias in the early months by fixing time after the 
initiation of therapy as a landmark. People whose survival time less than the landmark time will be excluded from the analysis. 
This approach effectively removes the bias present in the early time. In 2007, Houwelingen (13) designed the PBLS model, 
one way of dynamic prediction, combining Cox proportional hazards model and landmark method, having advantages to 
solve the covariates with time-varying effect, simply operating and easily understanding.

Suppose that a data based on a sample of size n , consists of the triple ( ), ,i i iT Zδ , where ( )1,2,...,iT i n=  is the time to event 
for the i -th patient. iδ  is the event indicator ( =1iδ  if the event has occurred, =0iδ  if the time is censored). ijZ  is the i -th 
patient’s j -th covariate. Then the Cox proportional hazards (PH) model can be constructed as follows:

0 0( | )= ( )exp ( )= ( )exp ( Z )j jh t h t h t β′ ∑Z Zβ  [1]

where j is the coefficient for the j -th covariate ( Z j ) and the 0( )h t is the baseline hazard function
However, the Cox PH model was found evidence of the non-proportionality of hazards for many reasons. The time-

varying effect model is denoted as

( )0( | )= ( )exp ( )h t h t t ′Z Zβ
 

[2]

Exploring the prognosis factors is important for clinical research, but a good prognostic prediction model might be more 
important to patients. Patients after diagnosis of cancer may pay more attention to the probability of “w” years’ survival 
or mortality. Moreover, patients maybe not only pay attention at the start of the treatment but also any time of the follow-
up visits. This emphasizes the dynamic use of time in the prediction model. In van Houwelingen [2007], landmarking is 
introduced as a tool to obtain predictions from s up to hort s w= + . And then use the Cox PH model in that interval as 
follows:

( )0( | , , ) | , exp( ),l l LM l lh t s w h t s w s t s w′= ≤ ≤ +Z Z β  [3]

We can use this simple Cox PH model at any landmark time point [ ]1, Ls s s∈ . Maybe the PH assumption is violated in 
some intervals. But it is a very convenient and useful way to obtain a dynamic prediction without having to fit a model with 
complicated time-varying effects.

The analysis is based on a “super prediction dataset” (more information see the supplemental method 2 “The construction of 
a super prediction data set”). After obtaining the data set, we can establish the proportional baselines landmark supermodel. The 
first step is to let the regression coefficients LMβ  depend on 
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 in a smooth way and to model that 
in a linear way. The form can be
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= ∑β  and mb is the sum of the terms of the coefficients. An easy way is to use the spline or a parametric 
model like: 2

0 1 2 ( )LM l l ls s sβ γ γ γ= + + . Every dataset can be viewed as a “strata.” There are some patients repeated in each strata 
in the super dataset. So the baseline hazard function depends on ls  via the smooth functions modeled directly by letting
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[5]

Where 1( ) ( )j l j lg s f s+= and hm is the sum of the terms of the baselines. Then the proportional baselines landmark supermodel 
(PBLS) can be

( )0( | ) ( ) (, ), ( ), LMh t Z s w h t exp Z s s t s wsθβ′= ≤ ≤ ++  [6].
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And the integrated partial log-likelihood (ipl*) is
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The baseline hazards are: 
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Let ( ) ( )* *
0 0̂

ˆ
i

i it t
H t h t

≤
= ∑  be the corresponding cumulative hazard, then the simple predictive landmark model is given by  

( ) ( ) ( ) ( )' * *
0 0
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The predicted w-year dynamic survival rate at any prediction time was obtained by 
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Then the w-year dynamic HR at different time point can be calculated as following equations:
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Supplemental method II The construction of a super prediction data set

To better understand the construction of a super prediction data set, we fabricate a toy data set containing two variables for 
six single-record-per-patient subjects. The data is shown in Table S1.

Then we construct the super prediction data set for six subjects as the following steps:
Fix the prediction window w (see the blue part in Figure S1). The selection of w relies on the severity of the cancer, w=5 

or w=10 for the milder cancers, w=1 or w=2 for the severe cancers. Suppose the six patients want to know the probability of 
mortality of 5 years at any prediction time point ( s ), then the prediction window was fixed at w=5. 

Select a set of prediction landmark time points ( [ ]1, Ls s s∈ ). (see the blue circles and the yellow parts in Figure S1). 
The value of L defines a weighting of the prediction time points in the model to be developed. The simplest approach 
is taking an equidistant grid of points on an interval { }1, Ls s . For six subjects, a set of prediction landmark time points 

1 2 3 4{ , , , } {0,1,2,3}s s s s = was selected at every 1 year between 0 and 3 years. In reality, the value of L between 20 and 100 will be 
sufficient and should not depend on the actual event times.

Create a prediction data subset for each landmark timepoint ( s ), who was still alive at s  and administrative censored 
at s w+  (see the red circles and the blue parts in Figure S1). In the first landmark time point ( 1 0s = ) from Table S2, all the 
subjects were included and administrative censored at 1 0 5s w+ = + , so Time for the subject (ID=5) and the subject (ID=6) 
became 6 to 5 and 8 to 5 and Status for the subject (ID=6) became 1 to 0 because subject 6 still alive after the diagnosis at the 
beginning. In the second landmark time point ( 2 1s = ), the subject (ID=1) was excluded from the interval [ ]6,1  due to the event 
time ( 19.0 < ). Time for the subject (ID=5) and the subject (ID=6) became 6 to 6 and 8 to 6 and Status for the subject (ID=6) 
became 1 to 0. In the third landmark time point ( 3 2s = ), the subject (ID=1) and the subject (ID=2) were excluded from the 
interval [ ]7,2  due to the event time ( 29.0 <  and 28.1 < ). Time for the subject (ID=6) became 8 to 7 and Status became 1 to 
0. In the last landmark time point ( 4 3s = ), only three subjects (4,5,6), who were still alive at 3 years after following-up, were 
included in the interval [ ]83， .

Stack all-created small subsets into a super prediction data set. In this large data set, the subsets corresponding to a given 
prediction time( s ) are labeled as “strata”. But it couldn’t be the stratified proportional hazards model. Because there are some 
patients repeated in each strata in the super dataset. 

Table S1 Six single-record-per-patient subjects

ID Time Status Age at diagnosis Gender

1 0.9 1 50 0

2 1.8 0 42 1

3 2.9 1 30 0

4 4.2 1 36 1

5 6 0 20 0

6 8 1 45 1

The unique subject identifier is ID. The variable Status takes on a value of 1 if the subject dies and 0 if the subject is censored. The time of 
death or censoring is captured by Time. The predictors of interest are Age at diagnosis and Gender.
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Table S2 A super prediction data set for six subjects
Landmark ID ID Time Status Age at diagnosis Gender Landmark time

1 1 0.9 1 50 0 0

2 2 1.8 0 42 1 0

3 3 2.9 1 30 0 0

4 4 4.2 1 36 1 0

5 5 5 0 20 0 0

6 6 5 0 45 1 0

21 2 1.8 0 42 1 1

31 3 2.9 1 30 0 1

41 4 4.2 1 36 1 1

51 5 6 0 20 0 1

61 6 6 0 45 1 1

32 3 2.9 1 30 0 2

42 4 4.2 1 36 1 2

52 5 6 0 20 0 2

62 6 7 0 45 1 2

43 4 4.2 1 36 1 3

53 5 6 0 20 0 3

63 6 8 1 45 1 3


