Supplementary

Figure S1 Analysis of germline DDR gene alterations in pan cancer. (A) Germline DDR gene alterations are frequent and non-uniformly distributed by type and frequency across cancer types. (B) Germline DDR pathway alterations are frequent and non-uniformly distributed by type and frequency across cancer types. (C) Mutual exclusion of germline mutations in different DDR pathways. DDR, DNA damage repair; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; DS, damage sensor; FA, Fanconi anemia; HR, homology-dependent recombination; NHEJ, non-homologous end joining.

Figure S2 The representative images of PD-L1 IHC in different cancers with or without DDR mutation. PD-L1, programmed cell deathligand 1; IHC, immunohistochemistry; DDR, DNA damage repair; NSCLC, non-small cell lung cancer; TPS, tumor proportion score; CPS, combined positive score.

Figure S3 The result of survival analysis for del-sDDRmut in pan-cancer immunotherapy cohorts. del-sDDRmut, deleterious somatic DDR mutation; DDR, DNA damage repair.

Gene description									DDR pathway membership						
Entrez gene ID	Gene symbol	Gene description	Alias (selected)	Additional comments	Approved sy	Approved name	HGNC ID	Location	BER	NER	MMR	FA	HR	NHEJ	DS
4361	MRE11A	MRE11 homolog A, double strand break repair nuclease			MRE11	MRE11 homolog, double strand break repair nuclease	HGNC:723 0	11921					MRE11A	MRE11A	
5591	PRKDC	Protein kinase, DNAactivated, catalytic polypeptid			PRKDC	protein kinase, DNAactivated, catalytic polypeptide	HGNC:941 3	8911.21						PRKDC	
10111	RAD50	RAD50 double strand break repair protein			RAD50	RAD50 double strand break repair protein	HGNC:981 6	5931.1					RAD50	RAD50	
4292	MLH1	mutL homolog 1			MLH1	mutL homolog 1	HGNC:712 7	3 p 22.2			MLH1				
4436	MSH2	mutS homolog 2			MSH2	mutS homolog 2	HGNC:732 5	2p21-p16.3			MSH2				
2956	MSH6	mutS homolog 6			MSH6	mutS homolog 6	HGNC:732 9	2 p 16.3			MSH6				
5395	PMS2	PMS1 homolog 2, mismatch repair system component			PMS2	PMS1 homolog 2, mismatch repair system component	HGNC:912 2	7 P 22.1			PMS2				
5424	POLD1	Polymerase (DNA directed), delta 1 , catalytic subunit		Replication	POLD1	DNA polymerase delta 1, catalytic subunit	HGNC:917 5	$19 \mathrm{q13.3}$	POLD1	POLD1	POLD1		POLD1		
472	ATM	ATM serine/threonine kinase			ATM	ATM serine/threonine kinase	HGNC:795	11922.3							ATM
545	ATR	ATR serine/threonine kinase			ATR	ATR serine/threonine kinase	HGNC:882	3 q 23							ATR
580	BARD1	BRCA1 associated RING domain 1			BARD1	BRCA1 associated RING domain 1	HGNC:952	2 q 35				BARD1	BARD1		
641	BLM	Bloom syndrome, RecQ helicase-like			BLM	Bloom syndrome RecQ like helicase	HGNC:105 8	15 q 26.1				BLM	BLM		
672	brCA1	Breast cancer 1, early onset			brCA1	BRCA1, DNA repair associated	HGNC:110 0	17 q 21.31				BRCA1	BRCA1		
675	BRCA2	Breast cancer 2, early onset			BRCA2	BRCA2, DNA repair associated	HGNC:1101	13 q 13.1				BRCA2	BRCA2		
83990	BRIP1	BRCA1 interacting protein Cterminal helicase 1	BACH1, FANCJ, OF		BRIP1	BRCA1 interacting protein C-terminal helicase 1	HGNC:204 73	17 q 23.2				BRIP1	BRIP1		
1111	CHEK1	Checkpoint kinase 1			CHEK1	Checkpoint kinase 1	HGNC:192 5	11924.2							CHEK1
11200	CHEK2	Checkpoint kinase 2			CHEK2	Checkpoint kinase 2	HGNC:166 27	22912.1							CHEK2
8452	CUL3	Cullin 3			CUL3	Cullin 3	HGNC:255 3	2936.2		CUL3					
2067	ERCC1	Excision repair crosscomplementation group 1			ERCC1	ERCC excision repair 1, endonuclease noncatalytic subunit	HGNC:343 3	19q13.32		ERCC1		ERCC1	ERCC1		
2175	FANCA	Fanconi anemia, complementation group A			FANCA	Fanconi anemia complementation group A	HGNC:358 2	16924.3				FANCA			
2176	FANCC	Fanconi anemia, complementation group C			FANCC	Fanconi anemia complementation group C	HGNC:358 4	9 q 22.32				FANCC			
2177	FANCD2	Fanconi anemia, complementation group D2			FANCD2	Fanconi anemia complementation group D2	HGNC:358 5	3p25.3				FANCD2			
2178	fance	Fanconi anemia, complementation group E			fance	Fanconi anemia complementation group E	HGNC:358 6	6p21.31				FANCE			
2188	FANCF	Fanconi anemia, complementation group F			FANCF	Fanconi anemia complementation group F	HGNC:358 7	11 p14.3				FANCF			
2189	FANCG	Fanconi anemia complementation group G			FANCG	Fanconi anemia complementation group G	HGNC:358 8	$9 p 13.3$				FANCG			
55120	FANCL	Fanconi anemia, complementation group L			FANCL	Fanconi anemia complementation group L	HGNC:207 48	2p16.1				FANCL			
4595	MUTYH	mutY DNA glycosylase			MUTYH	mutY DNA glycosylase	HGNC:752 7	1 p34.1	MUTYH						
79728	PALB2	Partner and localizer of BRCA2	FANCN		PALB2	Partner and localizer of BRCA2	HGNC:261 44	16p12.2				PALB2	PALB2		
5426	POLE	Polymerase (DNA directed), epsilon, catalytic subunit		Replication	POLE	DNA polymerase epsilon, catalytic subunit	HGNC:917 7	12q24.33	POLE	POLE					
5888	RAD51	RAD51 recombinase	FANCR		RAD51	RAD51 recombinase	HGNC:9817	15915.1				RAD51	RAD51		
7465	WEE1	WEE1 G2 checkpoint kinase			WEE1	WEE1 G2 checkpoint kinase	HGNC:127 61	11p15.4							WEE1

DDR, DNA damage repair; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; DS, damage sensor; FA, Fanconi anemia; HR, homology-dependent recombination; NHEJ, non-homologous end joining.

Characterisics	$\begin{gathered} \text { Overall, } \\ n=10,2841 \end{gathered}$	$\begin{gathered} \text { Biliary tract, } \\ n=8,501 \end{gathered}$	Bladder/urinary tract, $n=2,261$	Breast, $\mathrm{n}=3,321$	$\substack{\text { Cenix, } \\ n=1.691}$	Colorectum, $n=1,0971$	Endometrium, $n=1,061$	$\begin{gathered} \text { Esophagus, } \\ n=1,461 \end{gathered}$	$\begin{gathered} \text { als, } \\ n=571 \end{gathered}$	Head neck $\mathrm{n}=2,201$	Intestine $n=1,191$	$\begin{gathered} \text { Kichey, } \\ n=4,581 \end{gathered}$	$\begin{gathered} \text { Liver, } \\ \mathrm{n}=1,2371 \end{gathered}$	$\substack{\text { Lung, } \\ n=2,861}$	$\underset{\substack{\text { Lung (SCLCL), } \\ n=831}}{ }$	Mediastinal tumor, $\mathrm{n}=271$	Melanoma $\mathrm{n}=1,431$	Neuroendocrine, $n=791$	Other, $n=2,641$	$\begin{gathered} \text { Ovar, } \\ n=2,61 \end{gathered}$	$\begin{gathered} \text { Pancreas, } \\ n=5,121 \end{gathered}$	$\underset{\substack{\text { Prostate, } \\ \text { n=681 }}}{ }$	Sarcoma, $n=2,841$	Stomach, $\mathrm{n}=6,381$	$\underset{\substack{\text { Thyroida } \\ n=321}}{ }$	$\begin{gathered} \text { DDR" } \\ \text { ne=, } 0661 \end{gathered}$	$\begin{gathered} \text { DDDR" } \\ n=1,2181 \\ \hline \end{gathered}$	P value
Age, n [\%]																												0.7
<00	5,407 [5]	${ }^{399} 977$	${ }_{67}(30]$	${ }^{268}$ [81]	$130[77]$	${ }^{588}$ [54]	${ }_{55}$ [5]	${ }^{6444]}$	${ }_{36}$ [6]	$125[5]$	${ }_{66}[5]$	${ }^{287}$ [63]	${ }^{862}[70$	1,167 41$]$	25 [30]	18 [6]	78 [5]	${ }^{52}$ [6])	${ }^{171}$ [65]	162 [6]	250499	$14[21]$	${ }_{196}$ [90]	${ }^{305} 488$	${ }^{2}$ [69]	4,744 [5]	$\left.{ }^{633} 152\right]$	
260	$4.87747]$	${ }^{451} 153$	15970	${ }^{64[19]}$	${ }^{39}$ [23]	${ }^{509}$ [4]	51481	$82[56]$	${ }_{21} 137$	${ }^{95}$ [43]	53 (45)	171 [37]	$375130]$	1,709 [99]	58 (70)	${ }^{9133]}$	65 [45]	27 [34]	${ }_{93}$ [5]	${ }^{99}$ [88]	$262[5]$	5479]	88 [3]	${ }^{333}[52]$	${ }_{10}[1]$	4,292[4]	$585[48]$	
Sex, n [\%]																												0.066
Female	4,02 [39]	${ }^{388} 846$	$61[27]$	${ }^{328}$ [99]	169 [100]	$468342]$	106 [100]	26 [18]	${ }^{21} 377$	53 [24]	48 [40]	${ }^{129}$ [28]	$\left.{ }^{157} 713\right]$	1,026 [36]	16 [19]	12 [44]	${ }^{69} 488$	26 [33]	$109[4]$	260 [100]	${ }^{196[38]}$	${ }_{0} 001$	${ }^{147 \text { [5] }}$	${ }^{236[37]}$	16 [50]	3,551 [39]	511 [2]	
Male	${ }^{6,222[10]}$	462 [54]	$165[73]$	$41.2]$	$00^{(0)}$	${ }^{634}[58]$	$00^{(0)}$	${ }^{120}[82]$	${ }_{36}$ [63]	167 76]	$71(60)$	$\left.{ }^{329} 72\right]$	1,080 [87]	1,850 [64]	${ }_{67}(811)$	15 [6]	74 [5]	53 [67]	$1555[59$	$1[0.4]$	${ }^{316} 662$	$\left.{ }^{68} 1100\right]$	$\left.{ }^{137} 748\right]$	${ }^{402}[83]$	$16[50]$	5,515 [61]	${ }^{707}$ [58]	
MSS tye, n [\%]																												<0.001
mst-H	${ }^{22012.2]}$	${ }^{192} \times 24$	${ }_{5[2.3]}$	${ }^{0} 001$	$74.4]$	$711[8.8]$	$24[24]$	${ }_{0} 010$	$1{ }^{[1.8]}$	$2[1.0]$	${ }_{7}[1.3]$	$5[1.1]$	$9[0.8]$	$1990.7]$	${ }^{0} 001$	${ }_{0} 00$	10.71	$1[1.4]$	$2[0.8]$	${ }^{6[2.5]}$	$5[1.0]$	${ }^{34.6]}$	${ }_{0} 010$	${ }_{33}[5.4]$	00^{001}	$\left.{ }^{55} 0.0 .6\right]$	${ }^{165[14]}$	
ms-L	$20[0.2]$	$1{ }^{10.11}$	$1{ }^{10.5]}$	$2[0.7]$	${ }^{0} 00$	$1[0.11]$	${ }^{0} 001$	0^{000}	00^{00}	$1{ }^{10.5]}$	00^{00}	00^{00}	$1[0.1]$	$9{ }^{10.3]}$	${ }^{0} 001$	00^{00}	$1[0.71$	$1[1.4]$	00^{00}	00^{00}	000	${ }^{0} 00$	000	110.21	$113.2]$	$\left.{ }^{15} 50.2\right]$	${ }_{50.4]}$	
mss	9,55 [98]	786097	211 97]	${ }^{300}$ [99]	$\left.{ }^{151} 198\right]$	${ }^{979} 93$ [9]	78 [8]	${ }^{138}$ [100]	${ }^{54}$ [98]	${ }^{204}$ [99]	104[94]	441 199]	1,136 [99]	2,794 991	8001100	25 [100]	${ }_{188}^{199]}$	70 [97]	${ }^{25199]}$	$\left.{ }^{234} 498\right]$	477 199]	$\left.{ }^{62} 95\right]$	$259100]$	579 941	$\left.{ }^{30} 97\right]$	8,558 [99]	${ }^{997}[85]$	
PD-L1, n [\%]																												${ }^{0.039}$
<1\%	4,384 [99]	${ }^{387}$ [59]	112 [6]	152 [99]	$\left.{ }^{62} 45\right]$	57578.	$\left.{ }^{68} 73\right]$	46 [37]	${ }^{22[6]}$	$\left.{ }_{60} 136\right]$	$62[0]$	192 [67]	$\left.{ }^{550} 165\right]$	${ }^{89}(44]$	$55[86]$	${ }^{3113]}$	46 [39]	49 [84]	${ }^{16[61]}$	${ }^{112}$ [5]	263 [64]	44 [85]	${ }^{19980]}$	$\left.{ }^{362} 72\right]$	${ }_{6}^{653]}$	3,868 [60]	${ }^{516[56]}$	
21\%	3,036 [4]	$265[4]$	${ }^{59}$ (3)	${ }^{67}$ [13]	76 [55]	$165[22]$	$25[27]$	79 [63]	$\left.{ }^{14} 313\right]$	107 [64]	26 [30]	${ }^{96}$ [3]	$\left.{ }^{291} 135\right]$	1,139 [56]	${ }_{9}{ }^{14]}$	20 [87]	71 (61]	9 (16]	${ }_{75}[19]$	${ }^{99} 477$	$146[36]$	${ }^{815]}$	${ }^{38} 820$	${ }^{141}[28]$	11 (65]	2,629 40$]$	$\left.{ }^{407} 74\right]$	
TMB (mut/Mb), median [IQR]	${ }^{6[4,10]}$	6[4,9]	$10[6,77]$	$6[4,9]$	$\left.{ }^{6[4, ~ 4] ~}\right]$	$88[9,10]$	$8[6,2]$	$8[8,11]$	$3[2,4]$	6[4,9]	6[4,9]	${ }_{5}[3,7]$	${ }_{6[5,9]}$	74, 13]	${ }^{11}[18,16]$	5[2, 6]	$4[3,6]$	${ }_{5}[3,7]$	4[2,] $]$	${ }_{6[3,7]}$	5[3, 6]	${ }_{5}^{[2,6]}$	$3[2,5]$	6[4, 10$]$	$2[2,6]$	64, 9]	${ }_{96,21]}$	<0.001
TMB group, [\%]																												<0.001
<Median	5,027 [5]	${ }^{415[54]}$	107 [50]	${ }^{159} 953$	${ }^{78}$ [50]	$\left.{ }^{561} 154\right]$	${ }^{57}$ [56]	$\left.{ }^{72} 53\right]$	${ }^{28}[5]$	${ }^{111}$ [4]	${ }^{61}$ [5]	${ }^{232}[52]$	$\left.{ }^{576} 651\right]$	${ }^{1,388}$ [50]	40 [51]	$14[56]$	${ }^{67}$ [50]	${ }_{36}[51]$	${ }^{128}[51]$	${ }^{132}$ [5]	$256[54]$	40 [62]	${ }^{137}$ [53]	${ }^{316[5]}$	16 [5]	4,637 [54]	${ }^{390}[34]$	
\geq Median	4,650 [4]	${ }^{359} 946$	107 [50]	$1400[47]$	78 [50]	483 [4]	45 [44]	$6347]$	$2749]$	96 [46]	50 [45]	213 [4]	564 [4]	1,375 [50]	$3949]$	$11(44]$	$66[50]$	$35[49]$	123 [49]	104444	221 [6]	$25[38]$	$\left.{ }^{120} 447\right]$	$29148]$	15 [48]	3,880 46$]$	770 [66]	

