

Figure S1 Pathological changes in the livers and kidneys of NOD/Ltj mice. Lymphocytic infiltration was evaluated in kidneys (A) and livers (B) with H&E staining in NOD/Ltj and ICR mice. ICR, Institute of Cancer Research; H&E, hematoxylin and eosin; NOD, non-obese diabetic.

Figure S2 The proportion and number of IFN- $\gamma^* \gamma \delta$ T cells in the spleen and peripheral blood of NOD/Ltj and ICR mice. (A) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen. (B) Flow cytometry plots and quantification of IFN- $\gamma^* \gamma \delta$ T cells in the spleen.

Figure S3 The proportion and number of $V\gamma6^* T$ cells and $V\gamma1^* T$ cells in the spleen of NOD/Ltj and ICR mice. (A) Flow cytometry plots of $V\gamma6^* T$ cells ($V\gamma6^* T$ cells are represented by $V\gamma1^* T$ cells) and $V\gamma1^* T$ cells in the spleen. (B) The proportion and number of $V\gamma6^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^* T$ cells was unchanged in the spleen between NOD/Ltj and ICR mice. (n=10, ns, no significance). ICR, Institute of Cancer Research; NOD, non-obese diabetic.

Figure S4 The proportion and number of $V\gamma6^+$ T cells and $V\gamma1^+$ T cells in the peripheral blood of NOD/Ltj and ICR mice. (A) Flow cytometry plots of $V\gamma6^+$ T cells and $V\gamma1^+$ T cells in the peripheral blood. (B) The proportion and number of $V\gamma6^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^+$ T cells was unchanged in the peripheral blood between NOD/Ltj and ICR mice. (n=10, ns, no significance). ICR, Institute of Cancer Research; NOD, non-obese diabetic.

Figure S5 The proportion and number of $V\gamma6^*$ T cells and $V\gamma1^*$ T cells in the lung of NOD/Ltj mice and ICR mice. (A) Flow cytometry plots of $V\gamma6^*$ T cells and $V\gamma1^*$ T cells in the lung. (B) The proportion and number of $V\gamma6^*$ T cells was unchanged in the lung between NOD/Ltj and ICR mice. (C) The proportion and number of $V\gamma1^*$ T cells was unchanged in the lung between NOD/Ltj and ICR mice. (n=10, ns, no significance). ICR, Institute of Cancer Research; NOD, non-obese diabetic.