Supplementary

Trial (year)	Phase	#pts	Target	Agent	Stage	1st/2nd line	e Other Tx	Median OS	Result	Comment
Xiong (2004)(86)	II	41	EGFR	Cetuximab	LAPC, M1	1 st	Gem	7.1 mo	1-year OS 31% PR 12%, SD 63%	intratumoral EG
Van Cutsem (2009)(87)	III RCT	607	EGFR, VEGF-A	Erlotinib +Bevacizumab	M1	1 st	Gem	7.1 <i>vs.</i> 6 mo	No benefit	1.Gem+Erl+Bev 2.Gem+Erl+plac
Fujisaka (2015)(164)	Ι	17	mesothelin	amatuximab	nr	2 nd +	no	nr	3 with SD	Mixed solid tum Mesothelin-posi
Fuchs (2015)(97)	III RCT	800	IGF1R	Ganitumab	M1	1 st	Gem	7.0 <i>vs.</i> 7.1 <i>vs.</i> 7.2 mo OS	Well tolerated, no improvement of survival	Gem + 12 mg/kg
Picozzi (2015)(165)	lb RCT	58	MUC5ac	90 Yttrium- clivatuzumab tetraxetan	M1	3 rd +	+/-Gem	7.9 vs. 3.4 mo* (p=0.004)	* for multiple cycles +Gem OS 2.7 <i>vs.</i> 2.6 mo in the whole cohorts	+/- gemcitabine Ab with isotope
Ko (2016)(88)	Ш	46	EGFR MEK1/2	Erlotinib Selumetinib	LAPC, M1	2 nd	no	7.3 mo	No objective responses. In 38% SD in 6w+	59% with addition
Coveler (2016)(166)	I	35/50	SLC-44A4	ASG-5ME	M1	2 nd +	no	5 mo	Well tolerated, limited tumor activity – 1PR	PC + gastric car Ab-drug conjug cancers
Beg (2016)(167)	Ι	4/19	MUC5AC	NEO-102	LAPC, M1	2 nd +	no	nr	Well tolerated, no objective responses	PC and colon ca
Pishvaian (2016)(163)	I	6/39	CEA & CD3 epsilon TCR subunit	MEDI-565	nr	2 nd +	no	nr	No objective responses. 28% of all cancer SD at best	GI tumors: Bisp Pretreated with
Chung (2017)(98)	II RCT	137	MEK PI3K/AKT	Selumetinib MK-2206	M1	2 nd	no	3.9 <i>vs.</i> 6.7 mo	Shorter survival with immunotherapy	<i>vs.</i> oxaliplatin ar
Benson (2017)(168)	II RCT	240	LOXL2 enzyme	Simtuzumab	M1	1 st	Gem	7.6 mo <i>vs.</i> 5.9 mo <i>vs.</i> 5.7 mo OS	Well tolerated, but no improvement of clinical outcome	3 arns: Gem+Ab
Almhanna (2017)(169)	Ш	43	Guanylyl cyclase	MLN0264	LAPC, M1	2 nd +	no	5.4 mo	Managable safety but low efficacy , response rate 3%	Ab-drug conjug
Fountzilas (2017)(89)	Ш	18	EGFR	Erlotinib	LAPC, M1	1 st , 2 nd	no	3 mo	Terminated early due to futility	
Cardin (2018)(170)	Ι	19	Src EGFR	Dasatinib Erlotinib	LAPC, M1	1 st	Gem	8 mo	No objective responses. 9 pts had SD	1-y survival 32%
Abdel-Wahab (2018)(90)	I/II RCT	45	IGF-1R EGFR	MK-0646 Erlotinib	M1	1 st	Gem	10.4 (A) <i>vs.</i> 5.7 mo (C)	Best survival in MK arm, no additional benefit of Erlotinib. Low toxicity	3 arms – A: Gen
Maurel (2018)(96)	II	25	EGFR	Erlotinib	resected	NAT	Gem+RT	23.8 mo	Better OS for R0 vs. R1 resection or not resected: 65.5 mo vs 15.5 mo, P=0.01	
Dittrich (2019)(171)	lb	30	EGFR VEGF	Erlotinib Bevacisumab	LAPC, M1	1 st in M1	Сар	2.5 mo PFS	Good safety, but limited efficacy.	2 PR, 8/28 SD a
Halfdanarson (2019)(92)	II RCT	92	EGFR	Panitumumab, Erlotinib	M1	1 st	Gem	4.2 <i>vs.</i> 8.3 mo OS	Longer OS with dual inhibition, but increased toxicity	Gem +E <i>vs.</i> Ger
Mettu (2019)(93)	Ι	21	Src, EGFR	Dasatinib, Cetuximab	LAPC, M1	2 nd +	Gem	5.8 mo	Limited clinical effect, but toxicity with both	Solid tumors Gem + Das or G
Davis (2020)(102)	lb	31	Wnt pathway	Vantictumab	M1	1 st	GnP	10 mo	42% PR and 35.5%SD	Terminated due not reached
Hu (2019)(100)	II RCT	177	Notch2/3R	Tarextumab	M1	1 st	GnP	6.4 <i>vs.</i> 7.9 mo	No diff in OS, even somewhat better in the placebo (p=0.9)	
Wei (2019)(95)	II	114	EGFR	Erlotinib	Resected, head	NAT+ Adj	Gem	21.3 mo 25.4 mo for resected	Feasible	83/114 resected
Lin (2019)(172)	1/11		CA125 Protease inhib.	Oregovomab Nelfinavir	LAPC	NAT	SBRT + Gem/ leucovorin/ fluoruracil	13 mo	No difference in OS/TTP Compared to a historical group with same Tx	Nelfinavir as rad
Alewine (2020)(173)	1/11	20	mesothelin	LMB-100 (immunotoxin) + modified Pseudomonas exotoxin A	Advanced, recurrent	2 nd +	nPac	nr	1PR, 7 >50% decrease of CA19-9. Not well tolerated	Ab+exotoxin Higher mesothe
Bendell (2020)(101)	I	36	MMP9	Andecaliximab	LAPC, M1	1 st (in M1)	GnP + Ab	7.8 mo PFS	Well tolerated; PR in 44% (RECIST)	1st line in the m
Sinn (2020)(94)	IIb RCT	122	VEGFR, PDGFR, RAF, etc	Sorafenib	Resected R1	1 st	Gem	17.6 mo <i>vs.</i> 17.5 mo	No diff in RFS no OS	Gem + Ab's vs.
Assenat (2021)(174)	II	63	HER2, EGFR	Trastusumab + Erlotinib	M1	1 st	Gem + Ab	OS 7.9 mo	No control group	PFS better when expression corr
Tempero (2021)(99)	III RCT	424	ВТК	Ibrutinib	M1	1 st	GnP+Ab vs. GnP + placebo	9.7 mo <i>vs.</i> 10.8 mo	No diff in OS	More side effect
Lim (2021)(91)	II RCT	65	EGFR	Erlotinib	LAPC, M1	1 st	GemOx +E versus Gem +E	3.9 mo <i>vs.</i> 1.4 mo PFS, not OS (trend)	Better PFS with oxaliplatin,	Ab not tested -

```
nent
umoral EGFR expression
n+Erl+Bev
n+Erl+placebo
d solid tumors
thelin-positive Tu on IHC
12 mg/kg, +20mg/kg vs. +placebo
emcitabine
th isotope
with additional chemotherapy after study's discontinuation
gastric cancer
rug conjugate against cell-surface target on most PC. & gastric
ers
nd colon cancer
nors: Bispecific Ab
eated with dexamethasone
aliplatin and fluorouracil (FOLFOX)
: Gem+Ab 700 mg vs. Gem-Ab 200 mg vs. Gem+placebo
rug conjugate
rvival 32%
s – A: Gem + MK,B: Gem+MK+E or C: Gem+E
8/28 SD at 6 mo
```

+E vs. Gem+E+P

+ Das or Gem + Das/Cet nated due to pathologic-fracture related safety, Max tolerated dose eached

1 resected. 52% 2-year survival for resected

avir as radiosensitizer. 4/11 resected

xotoxin er mesothelin expression in pts with tumor marker responses

ne in the metastatic setting

Ab's vs. Gem +placebo

better when grade >=2 cutaneous toxicity; HER2 and EGFR ssion corr with survival on multivariate analysis side effects and receiving lower dose chemo with Ab

tested - Erlotinib in both chemo arms, so unknown benefit

References

- 164. Fujisaka Y, Kurata T, Tanaka K, et al. Phase I study of amatuximab, a novel monoclonal antibody to mesothelin, in Japanese patients with advanced solid tumors. Invest New Drugs 2015;33:380-8.
- 165. Picozzi VJ, Ramanathan RK, Lowery MA, et al. (90) Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies. Eur J Cancer 2015;51:1857-64.
- 166. Coveler AL, Ko AH, Catenacci DV, et al. A phase 1 clinical trial of ASG-5ME, a novel drug-antibody conjugate targeting SLC44A4, in patients with advanced pancreatic and gastric cancers. Invest New Drugs 2016;34:319-28.
- 167.Beg MS, Azad NS, Patel SP, et al. A phase 1 doseescalation study of NEO-102 in patients with refractory colon and pancreatic cancer. Cancer Chemother Pharmacol 2016;78:577-84.
- 168.Benson AB 3rd, Wainberg ZA, Hecht JR, et al. A Phase II Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab or Placebo in Combination with Gemcitabine for the First-Line Treatment of Pancreatic Adenocarcinoma. Oncologist 2017;22:241-e15.
- 169. Almhanna K, Wright D, Mercade TM, et al. A phase II

study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest New Drugs 2017;35:634-41.

- 170. Cardin DB, Goff LW, Chan E, et al. Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results: A phase I clinical trial. Invest New Drugs 2018;36:442-50.
- 171. Dittrich C, Königsberg R, Mittlböck M, et al. Phase Ib trial combining capecitabine, erlotinib and bevacizumab in pancreatic adenocarcinoma - REBECA trial. Invest New Drugs 2019;37:127-38.
- 172. Lin C, Verma V, Ly QP, et al. Phase I trial of concurrent stereotactic body radiotherapy and nelfinavir for locally advanced borderline or unresectable pancreatic adenocarcinoma. Radiother Oncol 2019;132:55-62.
- 173.Alewine C, Ahmad M, Peer CJ, et al. Phase I/II Study of the Mesothelin-targeted Immunotoxin LMB-100 with Nab-Paclitaxel for Patients with Advanced Pancreatic Adenocarcinoma. Clin Cancer Res 2020;26:828-36.
- 174. Assenat E, Mineur L, Mollevi C, et al. Phase II study evaluating the association of gemcitabine, trastuzumab and erlotinib as first-line treatment in patients with metastatic pancreatic adenocarcinoma (GATE 1). Int J Cancer 2021;148:682-91.