$Table \ S1 \ {\rm List} \ of \ primers \ used \ in \ this \ study$

Gene	5'-3' sequence	Reference
Tnfα	F: TCGAGTGACAAGCCTGTAG	
	R: GTTGGTTGTCTTTGAGATCC	
116	F: GTTGCCTTCTTGGGACTGATG	
	R: GGGAGTGGTATCCTCTGTGAAGTCT	
Π1β	F: AAGATGAAGGGCTGCTTCCA	
	R: GTGCTGCGAGATTTGAA	
Saa1	F: GACAAATACTGAGCGTCCTC	
	R: ATTACCCTCTCCTCCAAG	
lcam1	F: CAGTCCGCTGTGCTTTGAGA	
	R: CGGAAACGAATACACGGTGAT	
Мср1	F: GCAGTTAACGCCCCACTCA	
	R: CCCAGCCTACTCATTGGGATCA	
lfnγ	F: AGCTCTTCCTCATGGCTGTT	
	R: TCCTTTTGCCAGTTCCTCCA	
Pepck	F: TGTCGGAAGAAGACTTTGAGAAA	
	R: TGCTGAATGGGATGACATACATG	
G6pase	F: GGAGTCTTGTCAGGCATTGCT	
	R: GCGCGAAACCAAACAAGAAG	
α-Sma	F: ACTGGTATTGTGCTGGACTC	
	R: CATGAGGTAGTCGGTGAGAT	
Timp1	F: CCTGGTCATAAGGGCTAAATTCA	
	R: TTAGTCATCTTGATCTTATAACGCTGC	
Smpd3	F: TCATGGACGTGGCCTATCACTGTT	
	R: TGCAGGCGATGTACCCAACAATTC	
Cd36	F: AGGTCTATCTACGCTGTGTTCGGA	
	R: CAATGGTTGTCTGGATTCTGGAGGG	
Cyp4a10	F: TCCAGGTTTGCACCAGACTCT	
	R: TCCTGGCTCCTCCTGAGAAG	
Cyp4a14	F: CAAGACCCTCCAGCATTTCC	
	R: GAGCTCCTTGTCCTTCAGATGGT	
Errα	F: TCAAGGAGGGTGTGCGTCTG	
	R: CTTGGCCCAGCTGATGGTGA	
Srebp1c	F: TGTGATCTACTTCTTGTGGCCCGT	
	R: AGGCTGCTCAGGTCATGTTGGAAA	
Fasn	F: GGTGTGGTGGGTTTGGTGAATTGT	
	R: TGCTTTAGCACCTGCTGTAGCTCT	
Fgf21	F: CTGGGGGTCTACCAAGCATA	
	R: CACCCAGGATTTGAATGACC	
Fxr	F: TGCTCACAGCGATCGTCATC	
	R: TCTCAGCGTGGTGATGGTTG	
Fgf15	F: TGAAGACGATTGCCATCAAG	
	R: GAGTAGCGAATCAGCCCGTA	
Tgr5	F: CTGCCCAAAGGTGTCTACGA	
	R: GCATTGGCTACTGGTGTGGT	
Gcg	F: TGAGATGAGCACCATTCTGGA	
	R: TCCGCAGAGATGTTGTGAAGA	
Pc1/3	F: TCAACCAGAGCACATGAAGC	
	R: ATTGCTGCTGCTGGAGTTTT	

Functional microbial gene

baiJ	F: TCAGGACGTGGAGGCGATCCA	(52)
	R: TACRTGATACTGGTAGCTCCA	
bsh	F: ATGGGCGGACTAGGATTACC	(53)
	R: TGCCACTCTCTGTCTGCATC	
bcoA	F: GCIGAICATTTCACITGGAAYWSITGGCAYATG	(54)
	R: CCTGCCTTTGCAATRTCIACRAANGC	
pduP	F: GTGGATGARACIGGIATGGGNAAYGTNGG	(55)
	R: CAATAGCCYTCICCICCRAAICCIADNGC	
mmdA	F: AATGACTCGGGIGGIGCIMGNATHCARGA	(55)
	R: GATTGTTACYTTIGGIACNGTNGCYTC	
IcdA	F: CTGGTGTGCTGGWSIGCIWSIGTIGCNCC	(55)
	R: CAGATAGGTCCAIAYIGCDATNCCYTCCCA	

© HepatoBiliary Surgery and Nutrition. All rights reserved.

http://dx.doi.org/10.21037/hbsn-20-671

Figure S1 The expression of mitochondrial biogenesis related gene in liver (A) and adipose tissue (B). n=8 per group. Data are expressed as mean ± SD. Two-way ANOVA with Tukey's correction. *, P<0.05; **, P<0.01; ***, P<0.001.

Figure S2 Alpha and beta diversity analysis of gut microbiota composition after aged male fecal microbiota transplantation (AFMT). (A) Chao1 index; (B) Shannon index; (C) Bray_curtis based NMDS analysis. *, P<0.05; **, P<0.01; ***, P<0.001.

Figure S3 Partial least squares-discriminant analysis (PLS-DA) of metabolites detected by GC-TOFMS in 5- and 20-month-old male mice.

© HepatoBiliary Surgery and Nutrition. All rights reserved.

http://dx.doi.org/10.21037/hbsn-20-671

Table S2 Metabolic pathway and function analysis between 5- and 20-month-old male mice

Pathway name	Hits/total compounds	Р	FDR	Function
Ubiquinone and other terpenoid- quinone biosynthesis	1/3	0.000243	0.004595	Metabolism of cofactors and vitamins
Tyrosine metabolism	3/44	0.000286	0.004595	Amino acid metabolism
Phenylalanine, tyrosine and tryptophan biosynthesis	2/4	0.000312	0.004595	Amino acid metabolism
Phenylalanine metabolism	4/11	0.000312	0.004595	Amino acid metabolism
Valine, leucine and isoleucine biosynthesis	4/11	0.001602	0.015756	Amino acid metabolism
Valine, leucine and isoleucine degradation	4/38	0.001602	0.015756	Amino acid metabolism
Pantothenate and CoA biosynthesis	4/15	0.003982	0.033561	Metabolism of cofactors and vitamins
Citrate cycle (TCA cycle)	5/20	0.036678	0.2705	Carbohydrate metabolism
Tryptophan metabolism	2/40	0.042778	0.28043	Amino acid metabolism
Riboflavin metabolism	1/11	0.049989	0.29494	Metabolism of cofactors and vitamins

Top 10 pathways are listed.

Figure S4 Alpha and beta diversity analysis of gut microbiota composition after young female fecal microbiota transplantation (YFMT). (A) Chao1 index; (B) Shannon index; (C) Bray_curtis based NMDS analysis.

References

- Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499:97-101. Erratum in: Nature. 2014 Feb 20;506(7488):396. Hattori, Masahisa [corrected to Hattori, Masahira].
- Li CY, Dempsey JL, Wang D, et al. PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metab Dispos 2018;46:1226-40.
- 54. Louis P, Flint HJ. Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyrylcoenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl Environ Microbiol 2007;73:2009-12.
- 55. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014;8:1323-35. Erratum in: ISME J. 2014 Jun;8(6):1352.

© HepatoBiliary Surgery and Nutrition. All rights reserved.

http://dx.doi.org/10.21037/hbsn-20-671