Appendix 1

Genomic DNA isolation, WGBS library generation and sequencing

Genomic DNA isolation, WGBS library generation and sequencing were completed by Novogene Co., Ltd, China. Genomic DNA was isolated using Tiangen DP304 kit, and agarose gels were used to monitor degradation and contamination of DNA. DNA purity was measured by the NanoPhotometer[®] spectrophotometer (IMPLEN, CA, USA). DNA concentration was confirmed using Qubit[®] DNA Assay Kit in Qubit[®] 2.0 Flurometer (Life Technologies, CA, USA). All operation complied with the manufacturer's instructions. A total amount of 5.2 microgram genomic DNA spiked with 26 ng lambda DNA were fragmented by sonication to 200–300 bp with Covaris S220, followed by end repair and adenylation. Cytosine-methylated barcodes were ligated to sonicated DNA as per manufacturer's instructions. Ligated DNA fragments were treated twice with bisulfite using EZ DNA Methylation-GoldTM Kit (Zymo Research). The bisulfite-treated single-strand DNA fragments were PCR amplificated using KAPA HiFi HotStart Uracil + ReadyMix (2X). Library concentration was quantified by Qubit 2.0 Flurometer (Life Technologies) and quantitative PCR, and the insert size was assayed on Agilent Bioanalyzer 2100 system. The library preparations were sequenced on an Illumina NovaSeq platform, and 150 bp paired-end reads were generated. Image analysis and base calling were performed with Illumina CASAVA pipeline, and finally 150 bp paired-end reads were generated. At least 30 × sequencing depth was reached for each sample.

WGBS data analysis

FastQC was used to generate a quality report of raw WGBS sequencing reads (55). Fastp was used for quality control and low-quality reads filtering, which was developed in C++, and it performed fast quality control and data filtering on high-throughput sequencing reads (56). Adapters were trimmed from raw reads (AGATCGGAAGAGCACACGTCTGAACTC CAGTCA, AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT). Two ends with quality less than 3 or with N bases were also trimmed (cut_front, cut_front_window_size 1, cut_front_mean_quality 3, cut_tail, cut_tail_window_size 1, cut_tail_mean_quality 3). A sliding window of 4 bases was used to examine the average quality, and bases were trimmed for average quality lower than 15 (cut_right, cut_right_window_size 4, cut_right_mean_quality 15). Due to biased cytosine bisulfite treatment in front 10 bps, two ends reads were trimmed 10 bps from front (trim_front1 10, trim_front2 10). The minimum length to retain a trimming read was 36 bps (length_required 36). Only correctly paired reads were retained for downstream analysis, and they were clean reads for WGBS libraries.

MOABS software was used for DNA methylation analysis (18). The BSMAP module of MOABS was used to align clean reads to the reference genome (hg38) (57,58). The MCALL module of MOABS performed the single sample analysis to report methylation levels of CpG dinucleotides across the whole genome. Differentially methylated analysis was conducted using MCOMP module of MOABS.

Publicly available datasets

The PMRs were annotated using National Center for Biotechnology Information (NCBI) refseq annotations downloaded from the University of California Santa Cruz (UCSC) genome browser. A promoter region was defined 1,000 bp upstream and 500 bp downstream of transcription start site. The H3K27ac/H3K4me1 ChIP-seq data for ICC-derived cancer cell lines (CCLs) were obtained from GSE68388 (59). Transcription factors (TFs, TEAD1, TEAD4, YAP, TAZ and RPH) ChIP-seq data for CCLs were acquired from GSE68296 and GSE124430 (59,60). The ATAC-seq data for ICC samples were derived from TCGA database (61). The Chip-seq and ATAC-seq peaks from original manuscripts were employed, and genomic coordinates in hg19 were transformed into GRCh38 using LiftOver tool of UCSC. A PMR is considered to be annotated by a feature only when the overlapped length accounts for >50% of the PMR or the feature.

PMS formula

 $(-0.353)^{*} chr 1:171,854,763-171,854,992 + (-0.202)^{*} chr 2:21,710,188-21,710,438 + (-0.232)^{*} chr 2:62,464,507-62,465,170 + (-0.593)^{*} chr 3:179,767,886-179,768,188 + (-0.742)^{*} chr 6:14,396,913-14,397,254 + (-0.187)^{*} chr 7:149,987,544-149,987,810 + (-0.464)^{*} chr 9:22,005,150-22,006,798 + (-0.899)^{*} chr 10:239,222-239,510 + (-0.387)^{*} chr 11:57,165,910-57,166,366 + (-0.626)^{*} chr 12:64,671,264-64,671,938 + (-0.477)^{*} chr 12:103,319,240-103,319,760 + (-0.363)^{*} chr 15:85,545,689-85,545,931 + (-0.358)^{*} chr 15:97,383,669-97,383,930 + (-0.261)^{*} chr 18:26,881,728-26,881,977$

References

- 55. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
- 56. Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884-90.
- 57. Xi Y, Bock C, Müller F, et al. RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics 2012;28:430-2.
- 58. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 2009;10:232.
- Galli GG, Carrara M, Yuan WC, et al. YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Mol Cell 2015;60:328-37.
- 60. Kitchen P, Lee KY, Clark D, et al. A Runaway PRH/HHEX-Notch3-Positive Feedback Loop Drives Cholangiocarcinoma and Determines Response to CDK4/6 Inhibition. Cancer Res 2020;80:757-70.
- 61. Corces MR, Granja JM, Shams S, et al. The chromatin accessibility landscape of primary human cancers. Science 2018;362:eaav1898.

Figure S1 Random forest and LASSO Cox results for the PMS construction. (A) Grid search for optimal mtry and nodesize combination (marked by "x"). (B) The association between error rate distribution and number of trees. (C) VIMP for 35,023 PMRs, y-axis represents PMRs, x-axis represents VIMP for each PMR, "blue" indicates a significant association between PMRs and OS, and "red" implies an insignificant association between PMRs and OS. (D) Overlap of PMRs according to following criteria: relative VIMP >0.1, C-index >0.65 and SD >0.1. (E) Penalized LASSO Cox regression analysis to select survival-associated PMRs in the discovery cohort. (F) Fourteen selected PMRs included in the PMS, L1 Norm represents the summation of absolute nonzero coefficients at each λ , y-axis represents the values of nonzero coefficients at each λ . OOB, out-of-bag; VIMP, variable importance; SD, standard deviation; LASSO, least absolute shrinkage and selector operation; PMS, prognostic methylation score; PMRs, prognostically methylated regions; OS, overall survival.

Figure S2 JHUSM nomogram. (A) JHUSM nomogram. (B) Calibration curve for predicting survival at 3 years. (C) Calibration curve for predicting survival at 5 years. (D) Kaplan-Meier curves of OS by JHUSM nomogram quartile 1–4. JHUSM, Johns Hopkins University School of Medicine.

A PMS/Regions		C-index (95%	CI) <i>P</i> values	B Regions	•	C-index (95% C	I) <i>P</i> values
 Discovery cohort Validation cohort The whole cohort 	-\$	0.79 (0.75 - 0.8 0.74 (0.68 - 0.8 0.77 (0.74 - 0.8	4) < 0.001 0) < 0.001 1) < 0.001	chr10:239,222-239,510		0.66 (0.61 - 0.71 0.63 (0.56 - 0.71 0.65 (0.60 - 0.69) < 0.001) < 0.001) < 0.001
chr1:171,854,763-171,854,992		0.67 (0.62 - 0.7 0.54 (0.46 - 0.6 0.62 (0.57 - 0.6	3) < 0.001 3) 0.337 7) < 0.001	chr11:57,165,910-57,166,366		0.68 (0.62 - 0.73 0.61 (0.53 - 0.69 0.65 (0.61 - 0.70) < 0.001) 0.007) < 0.001
chr2:21,710,188-21,710,438		0.66 (0.60 - 0.7 0.61 (0.54 - 0.6 0.64 (0.60 - 0.6	1) < 0.001 8) 0.002 8) < 0.001	chr12:64,671,264-64,671,938	‡	0.68 (0.63 - 0.73 0.68 (0.62 - 0.75 0.68 (0.64 - 0.72) < 0.001) < 0.001) < 0.001
chr2:62,464,507-62,465,170	- -	0.69 (0.64 - 0.7 0.63 (0.56 - 0.7 0.66 (0.62 - 0.7	4) < 0.001 1) < 0.001 1) < 0.001	chr12:103,319,240-103,319,760		0.65 (0.60 - 0.70 0.65 (0.57 - 0.73) < 0.001) < 0.001
chr3:179,767,886-179,768,188	-	0.67 (0.62 - 0.7 0.72 (0.65 - 0.7 0.69 (0.65 - 0.7	2) < 0.001 8) < 0.001 3) < 0.001			0.66 (0.62 - 0.71	< 0.001
chr6:14,396,913-14,397,254	-==	0.67 (0.62 - 0.7 0.62 (0.55 - 0.7 0.64 (0.60 - 0.6	2) < 0.001 0) 0.001 9) < 0.001	chr15:85,545,689-85,545,931	-	0.68 (0.61 - 0.74 0.67 (0.63 - 0.71	<pre>> < 0.001 > < 0.001 > < 0.001</pre>
chr7:149,987,544-149,987,810	+	0.65 (0.60 - 0.7 0.64 (0.56 - 0.7 0.65 (0.60 - 0.6	1) < 0.001 2) < 0.001 9) < 0.001	chr15:97,383,669-97,383,930	-	0.66 (0.61 - 0.71 0.64 (0.57 - 0.72 0.66 (0.62 - 0.70) < 0.001) < 0.001) < 0.001
chr9:22,005,150-22,006,798	ŧ	0.67 (0.63 - 0.7 0.69 (0.62 - 0.7 0.68 (0.64 - 0.7	2) < 0.001 6) < 0.001 2) < 0.001	chr18:26,881,728-26,881,977	=	0.68 (0.63 - 0.73 0.67 (0.60 - 0.74 0.68 (0.64 - 0.72) < 0.001) < 0.001) < 0.001
	0.6	0.9	1.2		0.6	0.8 1.0	1.2

Figure S3 C-indices of the PMS and 14 PMRs for constructing the PMS in the training, validation and whole cohorts. PMS, pronostic methylation score; PMRs, prognostically methylated regions.

А						В					
Variables	Subgroup	Number		HR 95%CI	P value	Variables	Subgroup	Number		HR 95%CI	P value
Overall	Overall	334	+	8.38 (5.98 - 11.73)	< 0.001	Cirrhosis	No Yes	295 37		8.62 (6.03 - 12.33) 5.33 (1.84 - 15.47)	< 0.001 0.001
Sex	Male Female	182 152	+	9.75 (6.23 - 15.24) 6.66 (3.91 - 11.36)	< 0.001 < 0.001	Differentiation	Poor Good/moderat	228 e 102	<u>+</u>	7.47 (5.08 - 10.99) 11.55 (5.22 - 25.57)	< 0.001 < 0.001
Age	≤60y >60y	174 160	±	7.77 (4.93 - 12.25) 8.34 (5.06 - 13.77)	< 0.001 < 0.001	TNM stage	Stage I Stage II Stage III	64 41 215		9.79 (3.90 - 24.57) 3.97 (1.52 - 10.39) 9.79 (6.45 - 14.86)	< 0.001 0.004 < 0.001
Adjuvant therapy	No Yes	262 72	+	9.35 (6.38 - 13.73) 7.15 (3.31 - 15.44)	< 0.001 < 0.001	ТВ	Normal Elevated	14 = 311 23	+	8.22 (5.83 - 11.60) 20.81 (2.24 - 193.42)	< 0.001 < 0.001
Ascites	No Yes	306 28	<u> </u>	8.28 (5.80 - 11.81) 10.88 (2.76 - 42.96)	< 0.001 < 0.001	ALT	Normal	263	+	8.38 (5.66 - 12.43) 7 80 (3.94 - 15.45)	< 0.001
Hepatolithiasis	No Yes	326 8	+	8.41 (5.99 - 11.81) 13.21 (0.35 - 496.02)	< 0.001 0.096	AST	Normal	247	+	8.59 (5.77 - 12.81)	< 0.001
Hepatectomy	Minor Major	118 216	*	8.90 (4.90 - 16.19) 8.55 (5.60 - 13.05)	< 0.001 < 0.001	Albumin	Decreased	55	—	8.04 (3.25 - 19.90)	< 0.001
Tumor number	Single Multiple	260 74	*	8.28 (5.64 - 12.15) 10.00 (4.66 - 21.44)	< 0.001 < 0.001		Normal	279		8.21 (5.69 - 11.85) 8.45 (5.94 - 12.02)	< 0.001
Size	≤5cm >5cm	138 196	+	8.17 (4.56 - 14.64) 9.29 (6.05 - 14.26)	< 0.001 < 0.001	PT	Prolonged	24		8.94 (2.01 - 39.77)	0.003
Macro vascular invasion	No Yes	257 77	#	8.83 (5.87 - 13.27) 6 15 (3 37 - 11 19)	< 0.001 < 0.001	Child-pugh grade	A B	319 15	+	8.30 (5.89 - 11.68) 11.94 (0.72 - 196.91)	< 0.001 0.033
Micro vascular invasion	No	271	+	8.35 (5.69 - 12.25) 7 21 (3 46 - 15 03)	< 0.001	GGT	Normal Elevated	121 213	*	9.24 (4.92 - 17.36) 7.35 (4.93 - 10.98)	< 0.001 < 0.001
Adjacent organ invasion	No	277 57	+	7.45 (5.11 - 10.85)	< 0.001	AFP	Normal Elevated	283 50	.	9.25 (6.30 - 13.59) 9.25 (3.92 - 21.84)	< 0.001 < 0.001
Liver capsule invasion	No Yes	128 206	+	7.60 (4.31 - 13.39) 9.12 (5.97 - 13.95)	< 0.001 < 0.001	CEA	Normal Elevated	208 123	_	12.30 (7.24 - 20.90) 5.81 (3.54 - 9.52)	< 0.001 < 0.001
Lymph node metastasis	No Yes	272 62	_	8.32 (5.56 - 12.45) 5.50 (2.83 - 10.69)	< 0.001 < 0.001	CA19-9	Normal Elevated	105 228	_	16.87 (7.98 - 35.68) 6.59 (4.42 - 9.85)	< 0.001 < 0.001
Margin status	R0 R1	326 8	+	8.13 (5.79 - 11.42) 18.12 (0.45 - 733.11)	< 0.001 0.046	HBsAg	Negative Positive	234 100	#	8.38 (5.51 - 12.75) 7.38 (4.16 - 13.08)	< 0.001 < 0.001
			2 4 8 1632						2 4 8 16 32		

Figure S4 Subgroup analyses according to clinical variables. HR, hazard ratio; TNM stage, tumour-node-metastasis stage; TB, total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; PT, prothrombin time; GGT, gamma-glutamyl transpeptidase; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; HBsAg, hepatitis B surface antigen.

Variable	Training cohort	Validation cohort	P value				
Age (years)	59 (51–65)	62 (55–69)	0.004				
Sex							
Male	87 (53.0)	95 (55.9)	0.603				
Female	77 (47.0)	75 (44.1)					
Adjuvant treatment							
No	151 (92.1)	111 (65.3)	<0.001				
Yes	13 (7.9)	59 (34.7)					
Ascites							
No	143 (87.2)	163 (95.9)	0.004				
Yes	21 (12.8)	7 (4.1)					
Hepatectomy							
Minor	44 (26.8)	74 (43.5)	0.001				
Major	120 (73.2)	96 (56.5)					
Hepatolithiasis							
No	163 (99.4)	163 (95.9)	0.067 ^b				
Yes	1 (0.6)	7 (4.1)					
Size (cm)	5.8 (4.5–7.2)	5.5 (4.0–7.6)	0.155				
Tumor number							
Single	125 (76.2)	135 (79.4)	0.483				
Multiple	39 (23.8)	35 (20.6)					
Macro vascular inva	sion						
No	140 (85.4)	117 (68.8)	<0.001				
Yes	24 (14.6)	53 (31.2)					
Micro vascular invas	ion						
No	144 (87.8)	127 (74.7)	0.002				
Yes	20 (12.2)	43 (25.3)					
Adjacent organ invasion							
No	138 (84.1)	139 (81.8)	0.563				
Yes	26 (15.9)	31 (18.2)					
Liver capsule invasio	n						
No	51 (31.1)	77 (45.3)	0.008				
Yes	113 (68.9)	93 (54.7)					
Lymph node metasta	asis						
No	125 (76.2)	147 (86.5)	0.016				
Yes	39 (23.8)	23 (13.5)					
Distal metastasis							
M0	158 (96.3)	162 (95.3)	0.633				
M1	6 (3.7)	8 (4.7)					

 Table S1 Baseline characteristics of training and validation cohort

 Table S1 (continued)

Cirrhosis						
No	145 (88.4)	150 (88.2)	0.367			
Yes	19 (11.6)	18 (10.6)				
Missing	0 (0)	2 (1.2%)				
Differentiation						
Poor	118 (72.0)	110 (64.7)	0.076			
High/moderate	46 (28.0)	56 (32.9)				
Missing	0 (0)	4 (2.4)				
Margin status						
R0	157 (95.7)	169 (99.4)	0.034			
R1	7 (4.3)	1 (0.6)				
AJCC TNM stage						
IA	12 (7.3)	32 (18.8)	0.002			
IB	11 (6.7)	9 (5.3)				
П	13 (7.9)	28 (16.5)				
IIIA	72 (43.9)	55 (32.4)				
IIIB	50 (30.5)	38 (22.4)				
IV	6 (3.7)	8 (4.7)				
TB (µmol/L)	13.2 (10.3, 17.0)	11.2 (8.7, 16.2)	0.002			
ALT (IU/L)	23 (16.0, 37.0)	22 (15.0, 34.0)	0.260			
AST (IU/L)	29 (23.0, 37.0)	24 (19.0, 30.0)	<0.001			
Albumin (g/L)	44.1 (40.9, 46.7)	43.8 (40.3, 46.0)	0.342			
PT (second)	11.5 (10.9, 12.1)	11.2 (10.7, 11.7)	0.002			
Child-Pugh grade						
А	159 (97.0)	160 (94.1)	0.211			
В	5 (3.0)	10 (5.9)				
GGT (IU/L)	64.5 (33.0, 119.0)	62.5 (31.0, 137.5)	0.544			
AFP (ng/mL)	3.5 (2.4, 5.5)	2.9 (2.2, 5.4)	0.200			
CEA (ng/mL)	2.5 (1.4, 4.9)	2.6 (1.6, 4.6)	0.634			
CA19-9 (ng/mL)	63.2 (16.6, 431.2)	51.9 (17.5, 284.4)	0.774			
HBsAg						
Negative	118 (72.0)	116 (68.2)	0.459			
Positive	46 (28.0)	54 (31.8)				
Categorical variables are presented as number of patients;						

Training cohort Validation cohort P value

Table S1 (continued)

Variable

Categorical variables are presented as number of patients; continuous variables are presented as median (IQR).^b, Fisher's exact test. AJCC, American Joint Committee on Cancer; TNM, tumor-node-metastasis; TB, total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; PT, prothrombin time; GGT, gamma-glutamyl transpeptidase; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; HBsAg, hepatitis B surface antigen; IQR, interquartile range.

Table S2 Univariate and multivariate analysis of the whole cohort $% \mathcal{T}_{\mathcal{T}}$

Variables	Number or median (IQR)	Univariate analysis	P value	Multivariate analysis HR (95% Cl) (without PMS)	P value	Multivariate analysis HR (95% Cl) (with PMS)	P value
Age (years)	60 (53, 67)	0.99 (0.98–1.01)	0.399	_	-	_	-
Sex (male/female)	182/152	1.13 (0.83–1.53)	0.434	_	-	_	-
Preoperative treatment (yes/no)	5/329	1.08 (0.27–4.36)	0.916	_	-	_	-
Adjuvant (yes/no)	72/262	0.83 (0.56–1.22)	0.337	_	-	_	-
Ascites (yes/no)	28/306	2.53 (1.56–4.10)	<0.001	2.72 (1.60–4.63)	<0.001	2.68 (1.59–4.51)	<0.001
Hepatectomy (major/minor)	216/118	1.22 (0.88–1.69)	0.241	_	-	_	-
Hepatolithiasis (yes/no)	8/326	1.56 (0.50–4.91)	0.444	_	-	_	-
Tumor number (multiple/single)	74/260	1.45 (1.02–2.05)	0.038	1.33 (0.93–1.92)	0.123	1.54 (1.06–2.24)	0.022
Size (cm)	5.5 (4.2, 7.4)	1.10 (1.04–1.16)	0.001	1.07 (1.01–1.14)	0.029	1.12 (1.05–1.19)	<0.001
Macro vascular invasion (yes/no)	77/257	1.67 (1.19–2.35)	0.003	1.61 (1.10–2.35)	0.015	1.27 (0.84–1.92)	0.266
Micro vascular invasion (yes/no)	63/271	1.97 (1.38–2.82)	<0.001	1.35 (0.90–2.02)	0.150	1.34 (0.88–2.06)	0.173
Adjacent organ invasion (yes/no)	57/277	1.44 (0.99–2.10)	0.054	_	-	_	-
Liver capsule invasion (yes/no)	206/128	1.08 (0.79–1.49)	0.631	_	-	_	-
Lymph node metastasis (yes/no)	62/272	2.94 (2.10–4.11)	<0.001	2.57 (1.78–3.71)	<0.001	1.90 (1.33–2.72)	<0.001
Distal metastasis (yes/no)	14/320	2.66 (1.44–4.91)	0.002	1.32 (0.66–2.64)	0.427	1.11 (0.57–2.19)	0.754
Cirrhosis (yes/no)	37/295	1.92 (1.23–2.99)	0.004	1.41 (0.83–2.39)	0.204	0.98 (0.58–1.64)	0.926
Differentiation (poor/high or moderate)	228/102	1.65 (1.16–2.35)	0.005	1.70 (1.17–2.47)	0.005	1.26 (0.86–1.85)	0.236
Margin status (yes/no)	8/326	1.14 (0.51–2.59)	0.746	_	-	_	-
AJCC TNM stage			0.001	_	-	_	-
Stage I	64	-	Reference				
Stage II	41	2.06 (1.11–3.84)	0.023				
Stage III	215	1.79 (1.10–2.91)	0.019				
Stage IV	14	4.43 (2.10–9.36)	<0.001				
TB (µmol/L)	12.0 (9.3, 16.4)	1.01 (1.00–1.01)	0.013	1.01 (1.00–1.01)	0.156	1.01 (1.00–1.01)	0.099
ALT (IU/L)	23 (16, 36)	-	0.778	_	-	_	-
AST (IU/L)	27 (21, 35)	-	0.304	_	-	_	-
Albumin (g/L)	44.0 (40.9, 46.4)	0.98 (0.95–1.02)	0.340	_	-	_	-
PT (second)	11.3 (10.8, 11.9)	1.23 (1.09–1.38)	0.001	1.15 (0.99–1.33)	0.071	1.08 (0.94–1.25)	0.290
Child-Pugh grade (B/A)	15/319	1.82 (0.93–3.57)	0.083	_	-	_	-
GGT (IU/L)	64 (32, 125)	1.00 (1.00–1.00)	0.006	1.00 (1.00–1.00)	0.527	1.00 (1.00–1.00)	0.474
AFP (ng/mL)	3.2 (2.3, 5.4)	1.00 (1.00–1.00)	0.514	_	-	_	-
CEA (ng/mL)	2.6 (1.5, 4.7)	1.00 (1.00–1.00)	0.203	-	-	-	-
CA19-9 (elevated/normal)	228/105	2.29 (1.59–3.32)	<0.001	1.87 (1.28–2.75)	0.001	1.22 (0.83–1.81)	0.312
HBsAg (positive/negative)	100/234	1.40 (1.01–1.94)	0.042	1.15 (0.80–1.64)	0.455	1.18 (0.83–1.68)	0.352
PMS	-4.44 (-4.79, -4.02)	8.38 (5.98–11.74)	<0.001	-	-	8.12 (5.48–12.04)	<0.001

Categorical variables are presented as number of patients; continuous variables are presented as median (IQR). IQR, interquartile range; HR, hazard ratio; CI, confidence interval; PMS, promoter methylation score; AJCC, American Joint Committee on Cancer; TNM, tumor-node-metastasis; TB, total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; PT, prothrombin time; GGT, gamma-glutamyl transpeptidase; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; HBsAg, hepatitis B surface antigen.