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Supplementary

Appendix 1 Characterization of Fluid Flow

The Reynolds number was calculated as follows: 

𝑅𝑅𝑅𝑅 = 𝑉𝑉 ∗ 𝐿𝐿
𝜐𝜐 =  

𝑄𝑄
𝐴𝐴 ∗ 𝐿𝐿
(𝜇𝜇

𝜌𝜌)
=  𝑄𝑄𝜌𝜌𝐿𝐿

𝜇𝜇𝐴𝐴 (1)

where 𝑉𝑉 is flow velocity (m/s), computed from the average fluid flow rate (m3/s) and cross-sectional 

area (m) of the catheter (𝑄𝑄 and 𝐴𝐴, respectively). 𝐿𝐿 is characteristic length (m), and kinematic viscosity

(m2/s), 𝜐𝜐, of the fluid is represented using dynamic viscosity (kg/m-s), 𝜇𝜇, and density (kg/m3), 𝜌𝜌. Using 

maximum fluid flow rate of 1120 cc/min (1.8667E-5 m3/s) distributed equally across the two inlet 

catheters, density of water at 40 ℃ (992.2473 kg/m3) (Ref. (1)), diameter of catheter (1.016 cm), 

dynamic viscosity of water at 40 ℃ (6.52E-4 kg/(m*s)) (Ref. (1)), and area of each catheter as 

8.11x10-5 m2, the maximum Reynolds number can be computed:

𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 =
(1.8667 ∗ 10−5  𝑚𝑚

3

𝑠𝑠 ) (992.2473 𝑘𝑘𝑘𝑘
𝑚𝑚3) (0.01016 𝑚𝑚)

(6.52 ∗ 10−4  𝑘𝑘𝑘𝑘
𝑚𝑚 ∗ 𝑠𝑠) (8.11 ∗ 10−5 𝑚𝑚2) ∗ 2

≈ 1780. (2)

In fully developed pipe flow, laminar flow occurs when Re < 2000.

Model of Fluid Flow

Momentum and continuity equations were solved using Reynolds (ensemble) averaging, in which scalar 

quantities and vector components in both equations (represented here generally as 𝜙𝜙) are divided into 

mean (�̅�𝜙) and fluctuating (𝜙𝜙′) components such that 𝜙𝜙 = �̅�𝜙 + 𝜙𝜙′. The Reynolds-averaged Navier-Stokes 

(RANS) equations for momentum and continuity equations are presented in Cartesian tensor form for 

𝑖𝑖 & 𝑗𝑗 ∈ {1,2,3} and dummy variable 𝑙𝑙 for Einstein summation notation from Ref. (2):

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕 + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜌𝜌�̅�𝑢𝑖𝑖) = 0 (3)
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𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌�̅�𝑢𝑖𝑖) + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
(𝜌𝜌�̅�𝑢𝑖𝑖�̅�𝑢𝑗𝑗) = − 𝜕𝜕�̅�𝑝

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
[𝜇𝜇 ∗ (𝜕𝜕�̅�𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
+

𝜕𝜕�̅�𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

− 2
3 𝛿𝛿𝑖𝑖𝑗𝑗

𝜕𝜕�̅�𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑙𝑙

 )] + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(−𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′̅̅ ̅̅ ̅̅ ) (4)

where 𝜌𝜌 is fluid density, 𝑢𝑢 is the velocity vector, 𝑝𝑝 is static pressure, 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker Delta, and 

(−𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′̅̅ ̅̅ ̅̅ ) represents the Reynolds stresses. Specific dissipation rate (ω) and turbulence kinetic energy

(k) were solved in SST from the baseline form, represented below from Ref. (2) in Equations 5 and 6

(with average bars dropped hereafter such that �̅�𝜙 = 𝜙𝜙):

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌𝜌𝜌) + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) = 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
[Γ𝑘𝑘

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥𝑗𝑗

] + 𝐺𝐺𝑘𝑘 − 𝑌𝑌𝑘𝑘 + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑏𝑏 (5)

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌𝜌𝜌) + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) = 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
[Γ𝜔𝜔

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥𝑗𝑗

] + 𝐺𝐺𝜔𝜔 − 𝑌𝑌𝜔𝜔 + 𝐷𝐷𝜔𝜔 + 𝑆𝑆𝜔𝜔 + 𝐺𝐺𝜔𝜔𝑏𝑏 (6)

where 𝐺𝐺𝜔𝜔 represents the generation of 𝜌𝜌, 𝐺𝐺𝑘𝑘 is the generation of 𝜌𝜌 due to mean velocity gradients, 𝐷𝐷𝜔𝜔

represents the cross-diffusion term, and Γ𝜎𝜎, 𝑆𝑆𝜎𝜎, 𝑌𝑌𝜎𝜎, and 𝐺𝐺𝜎𝜎𝑏𝑏 represent effective diffusivity, source,

dissipation in the turbulence, and buoyancy terms, respectively, of 𝜎𝜎 ∈ {𝜌𝜌, 𝜌𝜌}. Lastly, in Ansys Fluent 

Reynolds stresses were modeled in the k-ω model using Boussinesq’s hypothesis (Ref. (2)):

−𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝜇𝑡𝑡 (𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 ) − 2
3 (𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

) 𝛿𝛿𝑖𝑖𝑗𝑗 (7)

where 𝜇𝜇𝑡𝑡 is the turbulent viscosity. The SST form extends the baseline form by incorporating turbulent 

shear stress transportation into its definition of 𝜇𝜇𝑡𝑡, thereby limiting eddy-viscosity formation (Ref. (2)):

𝜇𝜇𝑡𝑡 = 𝜌𝜌𝜌𝜌
𝜌𝜌 ∗ 1

max [ 1
𝛼𝛼∗ , 𝑆𝑆 ∗ 𝐹𝐹2

𝛼𝛼1 ∗ 𝜌𝜌 ] (8)

𝐹𝐹2 = tanh(𝛷𝛷2
2) (9)

𝛷𝛷2 = max [ 2√𝜌𝜌
0.09𝜌𝜌𝜔𝜔 , 500𝜇𝜇

𝜌𝜌𝜔𝜔2𝜌𝜌] (10)

𝛼𝛼∗ = 𝛼𝛼∞
∗ ∙ (𝛼𝛼0

∗ + 𝑅𝑅𝑒𝑒𝑡𝑡 𝑅𝑅𝑘𝑘⁄
1 + 𝑅𝑅𝑒𝑒𝑡𝑡 𝑅𝑅𝑘𝑘⁄ ) (11)
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𝑅𝑅𝑒𝑒𝑡𝑡 = 𝜌𝜌𝜌𝜌
𝜇𝜇𝜇𝜇 (12)

𝛼𝛼0
∗ = 𝛽𝛽𝑖𝑖

3 (13)

∞
∗where 𝛼𝛼∗ is dampening coefficient for turbulent viscosity, 𝛼𝛼1 = 0.71, 𝛼𝛼 = 1, 𝑅𝑅𝑘𝑘 = 6, 𝛽𝛽𝑖𝑖 = 0.072, 𝑆𝑆 is 

strain rate magnitude, and 𝑦𝑦 is distance to adjacent surface. Other parameter values used by Ansys 

Fluent for SST k-ω modelling are as in Ref. (2). 

Model of Heat Transport 

Energy of fluids was modeled in Ansys Fluent using the equations from Ref. (2) for each fluid species 𝑗𝑗:

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌 (𝑒𝑒 + 𝑣𝑣2

2 )) + ∇ ∙ (𝜌𝜌𝑣𝑣 (ℎ + 𝑣𝑣2

2 )) = ∇ ∙ (𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒∇𝑇𝑇 − ∑ ℎ𝑗𝑗𝐽𝐽𝑗𝑗
𝑗𝑗

+ 𝜏𝜏�̿�𝑒𝑒𝑒𝑒𝑒 ∙ �⃗�𝑣) + 𝑆𝑆ℎ (14)

where the four terms on the right-hand side represent, from left to right, energy transfer due to

conduction, species diffusion, viscous dissipation, and volumetric heat sources. Here, viscous 

dissipation and volumetric heat sources were not modeled and are assumed negligible. Thus, Equation 

14 was simplified in this study to:

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌 (𝑒𝑒 + 𝑣𝑣2

2 )) + ∇ ∙ (𝜌𝜌𝑣𝑣 (ℎ + 𝑣𝑣2

2 )) = ∇ ∙ (𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒∇𝑇𝑇 − ∑ ℎ𝑗𝑗𝐽𝐽𝑗𝑗
𝑗𝑗

) (15)

where 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒 is the effective conductivity obtained as the sum of the thermal conductivity 𝜌𝜌 and turbulent 

thermal conductivity 𝜌𝜌𝑡𝑡, 𝐽𝐽𝑗𝑗 is the diffusion flux of species 𝑗𝑗, and 𝜌𝜌, 𝑣𝑣, 𝑒𝑒, and 𝑇𝑇 are the density, velocity,

internal energy, and temperature of the fluid, respectively. For a simulation of a single fluid species, 

enthalpy, ℎ, is computed as

ℎ = ℎ𝑗𝑗 = ∫ 𝑐𝑐𝑝𝑝,𝑗𝑗 𝑑𝑑𝑇𝑇
𝑇𝑇

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
+ 𝑝𝑝

𝜌𝜌 (16)

where 𝑐𝑐𝑝𝑝,𝑗𝑗 is the isobaric specific heat for 𝑗𝑗, 𝑝𝑝 is the gauge pressure, 𝑇𝑇 is fluid temperature, and 𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒 is

298.15 K for Ansys’ pressure-based solver. The internal energy 𝑒𝑒 is defined as
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𝑒𝑒 = ℎ −
𝑝𝑝𝑜𝑜𝑜𝑜 + 𝑝𝑝

𝜌𝜌 (17)

where 𝑝𝑝𝑜𝑜𝑜𝑜 is the operating pressure.

For solids, the energy transport for a solid with isotropic heat conductivity was simulated as given 

for Ansys Fluent in Ref. (2): 

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌ℎ) + ∇ ∙ (�⃗�𝑣𝜌𝜌ℎ) = ∇ ∙ (𝑘𝑘∇𝑇𝑇) + 𝑆𝑆ℎ (18)

where 𝜌𝜌, 𝑘𝑘, 𝑇𝑇, and 𝑆𝑆ℎ are the solid’s density, conductivity, temperature, and volumetric heat source

term, respectively, for the solid and are defined analogously to their liquid counterparts. The sensible 

enthalpy of the solid, ℎ, is computed as ℎ = ∫ 𝑐𝑐𝑜𝑜 𝑑𝑑𝑇𝑇𝑇𝑇
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

. Because motion of organs and the abdominal 

cavity is not considered in this model, the velocity field �⃗�𝑣 = 0. Since this study did not use volumetric 

heat sources, 𝑆𝑆ℎ = 0. Thus, Equation 18 simplifies in this study to:

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜌𝜌ℎ) = ∇ ∙ (𝑘𝑘∇𝑇𝑇) (19)

Grid and Time Step Independence 

Grid independence was ensured through mesh sensitivity analysis of outlet temperature 

(Figure S1A) and probes (Figure S1B) across three mesh resolutions: low (158859 nodes and 

803073 elements), medium (212444 nodes and 1069090 elements), and high (786837 nodes and 

4081208 elements). Across all tests, inlet flow rate was held constant at 1100 cc/min. Differences 

between meshes remained within 0.2 ℃ of outlet temperature. For probes, temperature changes 

between meshes were <0.3 ℃. Thus, the medium resolution mesh was chosen. 

Time step independence was determined through time step sensitivity analysis for both the outlet

temperature (Figure S1C) and the temperature for each probe location at 5400s

(Figure S1D). Time step sizes analyzed were 0.0625s, 0.25s, and 1s. Outlet temperatures

and probe location temperatures were within 1E-2℃ regardless of time step size selected. Therefore, 

0.25s was chosen for the analysis.
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Figure S1 Grid	and	time	step	sensitivity	analysis.	(A)	Mesh	analysis	of	outlet	temperature	and	(B)	probe	temperatures	with	low,	medium,	
and	high	resolution.	(C)	Time	step	analysis	of	outlet	temperature	and	(D)	probe	temperatures	at	time	step	sizes	of	0.0625	s,	0.25	s,	and	1	s.	 
Probe	locations;	1:	between	small	and	large	bowels;	2:	 inferior	to	small	bowel	mesentery;	3:	next	to	duodenum;	4:	superior	to	 liver;	5:	
superior	to	fundus;	6;	posterior	to	stomach;	7:	posterior	to	liver.
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Table S2	Dimensions	of	abdominal	cavity	and	organs	simulated	using	SOLIDWORKS

Component Height (cm) Depth (cm) Width (cm)

Cavity 58.7 24.7 39.8

Transverse Colon 7.0 5.1 (diameter) 39.4

Stomach 11.2 6.9 18.5

Esophagus 10.6 7.0 2.8 (diameter)

Small Bowel 22.9 15.2 20.3 (diameter)

Liver 19.9 19.6 35.6 (apex to apex)

Table S1	Material	properties	used	for	simulations	[data	from	(3,4)]

Component Density (kg/m3) Heat capacity (J/(kg·℃)) Thermal conductivity (W/(m·℃))

Stomach 1,088 3,690 0.53

Liver 1,079 3,540 0.52

Transverse Colon 1,088 3,655 0.54

Small Bowel 1,030 3,595 0.49

Silicone Rubber 1,400 1,175 0.60


