P_0 = target failure rate (in this article X_0 = P_0 =0.15 for repair rate and 0.05 for major adverse events)

 P_1 = unacceptable failure rate (in this article P_1 =0.20 for repair rate and 0.1 for major adverse events)

 α =type I (false alarm) error rate, ie, error of assuming that the failure rate has increased to P₁ when it has not (α =0.05 and α =0.20 for upper boundaries).

 β =type II (false reassurance) error rate, ie, error of assuming that the failure rate has not increased when it has (β =0.05 and β =0.20 for lower boundaries).

The CUSUM was defined as $S_n = \sum_{i=1}^n (X_i - X_0)$ The upper boundary $l_1 = i \times (a/b - P_0) + Q/b$ The lower boundary $l_0 = i \times (a/b - P_0) - P/b$ $a = ln[(1 - P_0)/(1 - P_1)]$ $b = ln[P_1(1 - P_0)/P_0(1 - P_1)]$ $P = ln[(1 - \alpha)/\beta]$ $Q = ln[(1 - \beta)/\alpha]$