Supplementary

Table S1 Dose constraints for radiotherapy planning

Structure	Index	Objectives	Acceptable
PTV	D95	100%	-
	Max	<115%	-
Lungs	V5	<60%	<70%
	V20	<30%	<35%
Heart	V40	<40%	<45%
Spinal cord	D _{1 mL}	<45 Gy	-
	Max	<48 Gy	-
Body	Max	<115%	<120%

The LADR dose was optimized to be as low as possible without affecting the distribution of the other structures. D_{1 mL}, dose receiving 1 mL; D95, dose receiving 95% of the volume; LADR, left anterior descending coronary artery region; PTV, planning target volume; V5, volume receiving 5 Gy; V20, volume receiving 20 Gy; V40, volume receiving 40 Gy.

Table S2 Summary of the information on the devices used for treatment planning

Data of planning devices	DSA-VMAT	VMAT
Treatment machine	OXRAY	TrueBeam
Treatment planning system	Raystation	
Calculation methods	Collapsed Cone version 5.8	
No. of arc	2	
MLC width (central) (mm)	2.5	5
MLC width (peripheral) (mm)	5	10
MLC thickness (mm)	110	67
Maximum leaf speed (cm/s)	6.5	2.5
Collimator angle (degree)	-	15 & 345
Swinging angle (degree)	20–45 & 340–315	-

DSA, dynamic swing arc; MLC, multileaf collimator; No., number; VMAT, volumetric modulated arc therapy.