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Supplementary

Appendix 1

Methods

Data collection
Data used in this study includes COVID-19 histories of 
individuals and a follow-up serum antibody test. As it is more 
available to conduct this research among healthcare workers, 
convenience sampling is a practical way to collect data. 
However, as participants are chosen based on ease of access, 
it may not represent the broader population accurately.

First, we initiated data collection by distributing 
questionnaires to public health workers in Xiamen healthcare 
system, including hospitals, CDCs, and primary healthcare 
organizations, and questionnaires were distributed to samples 
who were selected via convenient sampling. As we targeted 
individuals who had been infected by SARS-CoV-2 or 
had received vaccinations after December 1st, 2022. After 
collecting and reviewing the completed questionnaires, a 
total of 1,344 questionnaires were collected. Based on prior 
research indicating that NAbs for COVID-19 might persist 
for a maximum of 73 days (34), questionnaires that were 
incomplete or lacking essential infection-related information 
were excluded from the study. Finally, 1,191 of them being 
eligible to be included as the study’s sample population.

Subsequently, we conducted serum antibody testing 
on the selected participants in four monthly intervals, 
specifically in February, March, April, and May. This 
longitudinal testing aimed to capture the variations in 
antibody titers over time.

MLR models
MLR models were established to analyze the relationship 
between individual baseline properties and COVID-19 
antibody titers. Regression coefficients (β), 95% CIs, and 
standardized regression coefficients (β) are calculated and 
the calculation results are presented in Figures S1-S6.

GBTMs
The study constructs a GBTM, which can depict the 
characteristic dynamic changes of time-varying variables as 
the number of follow-up visits increases. It simultaneously 
divides the population into several latent class groups and 
establishes a latent growth class model within each category 
to describe the individual changes over time within the 
group. This model can not only reveal the relationships 
between different latent trajectories but also depict the 
fluctuations within the trajectory, thus providing a more 
realistic grouping of indicators and conducting predictive 

research (16).
The study uses the “traj” package in Stata 17.0 software 

for data analysis, first analyzing the dynamic changes 
in serum IgG, IgM, and NAb from baseline, the first 
to the third follow-up visits, and employing GBTM to 
identify latent clusters with similar trajectories. The study 
hypothesizes that the population serum may be divided 
into up to five main categories: gradual growth type, 
gradual decline type, unchanged type, growth and then 
decline type, decline and then growth type. The model 
is set with the highest order of 3, meaning the potential 
groupings of the population are between 1 and 5 groups, 
with orders 0–3, where the order reflects the speed of the 
trend changes. The model’s effectiveness is evaluated using 
the BIC and the AIC, with the smallest absolute value of 
the indicators and closer to 0 indicating a better model fit. 
Additionally, a higher average posterior probability of group 
membership (AvePP) indicates a better model fit. To ensure 
the effectiveness of the grouping, each group composition 
in the model should account for at least 2–5% and must be 
consistent with medical knowledge.

After determining the GBTM groupings, χ2 analysis is 
used to compare differences in serological change patterns 
by gender, age, and region, and analysis of variance is used 
to compare differences in serological change patterns by 
gender, age, and region. Multivariate linear regression 
and multivariate logistic regression are used to compare 
demographic differences between different serological 
change patterns. A P value of <0.05 is considered statistically 
significant. See the GBTM results of IgG, IgM and NAb 
in appendix available at https://cdn.amegroups.cn/static/
public/jtd-23-1516-1.xlsx.

High-dimensional transmission dynamics model
VEAFIRPRV model was built under these assumptions:

In this model, we grouped the total population N into 
susceptible, V; exposed, E; asymptomatic infection, A; 
pre-symptomatic infection, F; symptomatic infection, 
I; removed/recovered that will not be reinfected, Rp; 
recovered and will possible be reinfected, R.

(I) First, for the total population, we have included 
various regions (i), age groups (j) and their vaccination status 
(k) in the compartment N when making the calculation.

(II) Transmission rate, which is in the dimension of 
[person·time−1], contributes to the reduction of susceptible 
population (V) and the increase of exposed population 
(E). Usually, in an ODE model, it simplifies individual 
properties to the population averaged quantities, and 
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depicts the age-heterogeneity of transmission by the ‘contact 
frequency matrix’. Therefore, we assumed that should age-
specific contact frequency matrices for various regions are 
available, then for every individual in different age groups, 
the expected number of symptomatic infectious individuals 
he/she has contacted during a time interval could be 
calculated. Then the vaccine efficacy, which considered 
to be able to reduce transmissibility, was included in to 
calculation.

(III) In an ODE model, any infected individual is first 
categorized as exposed (E), then at time t, according to 
the natural history of COVID-19, there would be two 
results for exposed population E, they either become pre-
symptomatic infection F or asymptomatic infections A. 
Assume that a proportion p of E is converted to A, and the 
proportion of E to I is (1 − p). It is generally believed that 
after a person is exposed to pathogens, the time interval of 
he/she gets invaded by the pathogen and able to emit it is 
called latent period. The rate of transformation from E to 
A is proportional to the amount of E with a scale factor of 
pωE and ω is the latent period coefficient. And in the case 
of symptomatic infections, since there would be a time lag 
between the time of virus excretion and symptoms onset, 
we set ω' and ω'' as average incubation period from exposed 
(E) to pre-symptomatic infection (F) and average incubation 
period from pre-symptomatic infection (F) to infections (I), 
respectively.

(IV) After infection, individuals would be removed/
recovered, however, some of the removed/recovered 
population could experience reinfection while others won’t. 
Therefore, we set two endings for COVID-19 infections: 
one is the removed/recovered group that would not be 
infected again (Rp), and the other is removed/recovered 
group that would experience reinfection (R). Here we set 
the proportion of those become susceptible again after 
recovery as δ. At time t, the number of transfers to R and Rp 
is γI if the time interval between onset and diagnosis from 
a symptomatic infection I is γ; the number of transfers to R 
from A who is identified as asymptomatic infection is γ'I.

(V) As reinfection is often correlated with losing 
immunity, therefore, for Rp become susceptible, V depends 
on the immunity duration of the individual, here we 
introduce τ to be the average duration coefficient for 
immunity duration at time t.

Sensitivity analysis
This High-dimensional transmission dynamics model is an 
extension of basic SEIAR model, or we could consider it as 

an SEIAR model with multiple groups. Since the SEIAR 
models with multi-group are widely used by many studies 
(36,37), the sensitivity of other model parameters could be 
found in those references. In our model, the vector of VE, 
is multiplied on the group-wise contact matrix; which makes 
the sensitivity analysis analogous to those for the contact 
matrix.

Additional results

Figure S1 Regression coefficients (β), 95% CIs for IgG with 
individual baseline properties. CI, confidence interval; IgG, 
immunoglobulin G.
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Figure S2 Standardized regression coefficients (β) for IgG with individual baseline properties. IgG, immunoglobulin G.

Figure S3 Regression coefficients (β), 95% CIs for IgM with individual baseline properties. CI, confidence interval; IgM, immunoglobulin M.
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Figure S4 Standardized regression coefficients (β) for IgM with individual baseline properties. IgM, immunoglobulin M.

Figure S5 Regression coefficients (β), 95% CIs for NAb with individual baseline properties. CI, confidence interval; NAb, neutralizing 
antibody.

Figure S6 Standardized regression coefficients (β) for NAb with individual baseline properties. NAb, neutralizing antibody.
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