Table S1 Details of key experts

Country	Expert name	Affiliation		
KSA	Dr. Ahmed Al lehebe	King Faisal Specialist Hospital & Research Center (Jeddah)		
KCA	Dr. Ameen Alomair	King Fried Specialist Legenital & Descense Contar (Divade)		
KSA	Dr. Ameen Alomair	King Faisal Specialist Hospital & Research Center (Riyadh)		
UAE	Professor Humaid Al Shamsi	Burjeel Hospital		
South Africa	Professor Coenraad Koegelenberg	Tygerberg Hospital		
Lebanon	Dr. Arafat Tfayli	American University of Bierut		
Jordan	Dr. Khaled Al Asad	University of Jordan		
Turkey	Dr. Ugar Selek	Koç University School of Medicine, Istanbul		
Egypt	Professor Ashraf Madkour	Ain Shams University		
Egypt	Professor Mohsen Mukhtar	Al-Kasr Al-Aini Medical School		
UAE	Dr. Bassam Mahboub	Dubai Health Authority		

All the key experts were specialized in the field of oncology and were affiliated with countries of the MEA region. An advisory board meeting took place wherein experts gathered for deliberations. Following extensive discussions and exchanges of insights about lung cancer screening and early detection, this consensus paper was collaboratively developed. KSA, Kingdom of Saudi Arabia; UAE, United Arab Emirates; MEA, Middle East and Africa.

Table S2 Genetic driver mutations associated with lung cancer in the MEA region

Gene	Common variants	Prevalence	Age	Smoking status	Prognostic significance
EGFR	Mutations in exons 19 and 21	10–16% in Western populations, 40–50% in Asians	Younger patients	Never smokers	Response to specific TKIs, T790M predictor of resistance
ALK	EML4-ALK variants	1-10% of NSCLC	Younger patients	Never smokers	Aggressive tumors, response to specific TKIs
ROS1	CD74-ROS1 variants	0.9-2.6% of NSCLC	Younger patients	Never smokers	Less aggressive tumors, response to specific TKIs
KRAS	Mutations in codons 12 and 13	30–40% of NSCLC, more common in Caucasians	Older ages	Smokers	Not clear
BRAF	Mutations in exon 15	2-4% of NSCLC	No age specificity	Smokers	Not clear
MET	Mutations in exon 14, amplification	Mutations in 1–10% of NSCLC, amplification in 5–22%	Older ages	Smokers	Resistance to EGFR-TKIs. Response to MET inhibitors
HER2	Mutations in exons 18–21, amplification	Mutations in 2–3% and amplifications in 2–5% of adenocarcinomas	Not clear	Mutations in never-smokers and amplifications in ex-smokers	Not clear

Data are adapted from "Druggable genetic alterations in NSCLC" (https://encyclopedia.pub/entry/6428#) and Fois *et al. Int J Mol Sci* 2021 (45). MEA, Middle East and Africa; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; ROS1, c-ros oncogene 1; KRAS, Kirsten rat sarcoma virus; BRAF, V-raf murine sarcoma oncogene homolog B1; MET, mesenchymal-epithelial transition factor; HER2, human epidermal growth factor receptor 2; TKIs, tyrosine kinase inhibitors; EML4, echinoderm microtubule-associated protein-like 4; NSCLC, non-small cell lung cancer.

Table S3 Key trials for lung cancer screening Trial Criteria for positive identification NLST Non-calcified nodules ≥4 mm I-ELCAP At least one solid or partly solid non-calcified pulmonary nodule ≥5 mm; or at least one nonsolid non-calcified pulmonary nodule ≥8 mm NELSON For (part) solid lung nodules, a volume >500 mm³, and for (part) solid or nonsolid nodules with a volume-doubling time of <400 days</td> ITALUNG At least one non-calcified solid nodules ≥5 mm or a non-solid nodule ≥10 mm or the presence of a part-solid nodule

NLST, National Lung Screening Trial; I-ELCAP, International Early Lung Cancer Action Project; NELSON, Nederlands-Leuvens Longkanker Screenings Onderzoek; ITALUNG, Italian Lung.