Supplementary

Table S1 AI and cardiac surgery

Method	Application scenarios	Evaluation	
Data collection			
Machine learning	Automatically extract information about cardiothoracic surgery from unstructured medical records	Improve data collection efficiency and reduce manual errors	
Natural language	Automatic analysis and recognition of medical images, such as cardiothoracic surgery markers in CT and MRI	Improve the accuracy and speed of diagnosis	
Data analysis			
Machine learning	Genomics data were analyzed to identify genetic variants associated with cardiothoracic surgery	Capable of handling large-scale datasets and revealing complex biomarkers	
Deep learning	For automatic classification of cardiothoracic surgery sub- types and prediction of treatment response	Provide personalized treatment recommendations to improve patient outcomes	
Predictive modeling			
Time series analysis	Predicting temporal trends in cardiothoracic surgery development and response to therapy	Help develop a more effective treatment plan	
Recurrent neural network	Used to analyze sequentially generated medical data, such as continuous monitoring data during treatment	Optimize the treatment process to achieve real-time adjustment	
Personalized intervent	ions		
Machine learning	The personalized treatment plan is customized according to the multi-dimensional data of the patient	Improve the therapeutic effect and reduce adverse reactions. Improve the therapeutic effect and reduce adverse reactions	
Recommendation system	Provide doctors with evidence-based treatment options and medication recommendations	Support decision making and improve the accuracy of treatment	
Monitoring platform			
Sensor network	Patient physiological parameters such as cardiothoracic surgery marker levels were monitored in real time	Timely detection of changes in the condition supports early intervention.	
Prediction model	Analyze patient data to predict disease progression and possible complications	To prevent serious incidents, take preventive measures in advance	
Interactive visualizatio	n		
Data visualization	It enables researchers, doctors, and patients to intuitively understand complex data and predictive models	Enhance data accessibility and understanding to facilitate shared decision making	
Decision support			
Decision support	Clinical guidelines and patient-specific data are combined to assist physicians in making treatment choices.	Improve the scientific and personalized level of treatment decision-making	

Al, artificial intelligence; CT, computed tomography; MRI, magnetic resonance imaging.

Table S2 AI and supervision and cardiac surgery	Table S2	AI	and	supervision	and	cardiac surgery
---	----------	----	-----	-------------	-----	-----------------

Method	Methods/Application scenarios	Evaluation	
Data quality			
Ensure data accuracy and consistency	Data quality and reliability are ensured through data validation and cleaning procedures	Improve the accuracy and confidence of AI models	
Protect patient privacy	Implement data de-identification and encryption measures to protect patient information	Comply with ethical and legal requirements and enhance patient trust	
Algorithmic transparency			
Improve algorithm transparency	Adopt interpretable AI models such as decision trees and logistic regression	Promotes understanding and trust, facilitates auditing and verification	
Reduce bias and unfairness	The unfairness is reduced by diversity training data and bias detection algorithm	Ensure fairness and justice and avoid discrimination	
Model verification			
Rigorous model validation	Cross-validation, A/B testing, etc., are used to evaluate model performance	Ensure the generalization ability and effectiveness of the model	
Clinical trials	Conduct clinical trials to evaluate the efficacy and safety of Al systems before practical application	Provide scientific evidence to support the application of AI systems	
Regulatory approval			
Get regulatory approval	Through FDA pre-market review or CE mark certification and other processes	Ensure product compliance with internationa and regional regulations	
Continuous monitoring and auditing	Implement continuous quality monitoring and regular audit to maintain product quality	Maintain product performance, detect and correct problems in time	
Market regulation			
Real-time security monitoring	Long-term safety and efficacy monitoring using real-world data	Timely detection of potential risks to ensure patient safety	
User feedback mechanism	A feedback system was established to collect feedback from doctors and patients on the AI system	Continuously improve products to meet user needs	
Ethics regulation			
Ethical review	Al research is reviewed by ethics committees to ensure ethical standards are met	Protect the rights and interests of participant and enhance the ethics of research	
Social impact assessment	Assess the impact of AI technologies on society, including employment, privacy, and social welfare	Promoting social justice and sustainable development	

Al, artificial intelligence; FDA, Flight Data Analysis; CE, Conformite Europeenne.