Appendix 1

Search date 2022.5.30-6.1

PubMed 265

(((((((Meconium aspiration syndrome[Mesh]) OR (Meconium aspiration syndrome[Title/Abstract]) OR (Meconium aspiration syndrome[Title/Abstract])) OR (Aspiration Syndrome, Meconium[Title/Abstract])) OR (Syndrome, Meconium Aspiration[Title/Abstract])) OR (Aspiration, Meconium[Title/Abstract])) OR (Meconium Inhalation[Title/Abstract])) OR (Meconium Aspiration[Title/Abstract])) OR (Aspiration, Meconium[Title/Abstract])) OR (Meconium Inhalation[Title/Abstract])) AND (((((((("Infant, Newborn"[Mesh]) OR (Infant, Newborn"[Title/Abstract])) OR (Newborn Infants[Title/Abstract])) OR (Newborn Infants[Title/Abstract])) OR (Newborns[Title/Abstract])) OR (Newborn[Title/Abstract])) OR (Neonate[Title/Abstract])) OR (Neonates[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Neonates[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Social Risk Factors"[Mesh]) OR (Risk Factors[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Social Risk Factors"[Mesh]) OR (Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors[Title/Abstract])) OR (Factor, Social Risk[Title/Abstract])) OR (Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors, Social Risk[Title/Abstract])) OR (Correlates, Health[Title/Abstract])) OR (Population at Risk[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Risk Scores[Title/Abstract])) OR (Risk Scores[Title/Abstract])) OR (Score, Risk[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor[Title/Abstract])) OR (Score, Risk Factor[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor[Title/Abst

EMBASE.com 419

(('Meconium aspiration syndrome'/exp) OR ('Meconium aspiration syndrome':ti,ab,kw) OR ('Aspiration Syndrome, Meconium':ti,ab,kw) OR ('Meconium Aspiration':ti,ab,kw) OR ('Aspiration Meconium':ti,ab,kw) OR ('Meconium Inhalation':ti,ab,kw) OR ('Infants, Newborn':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infant':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Neonate':ti,ab,kw) OR ('Infant':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infant':ti,ab,kw) OR

WOB 577

http://www.webofscience.com/wos/alldb/summary/eadaf559-9e5e-462a-878c-225c63f41115-3b65c535/relevance/1 ((((TS=(Meconium aspiration syndrome)) OR TS=(Aspiration Syndrome, Meconium)) OR TS=(Syndrome, Meconium Aspiration)) OR TS=(Meconium Aspiration)) OR TS=(Aspiration, Meconium)) OR TS=(Meconium Inhalation) AND ((((((TS=(Infant, Newborn)) OR TS=(Infant)) OR TS=(Infants, Newborn)) OR TS=(Newborn Infant)) OR TS=(Newborn)) OR TS=(Newborns)) OR TS=(Newborn)) OR TS=(Neonate)) OR TS=(Neonates)) OR TS=(Infants)

AND

Ovid medline 265

Ovid MEDLINE(R) ALL <1946 to May 27, 2022>

exp Meconium aspiration syndrome/ OR Meconium aspiration syndrome.mp OR Aspiration Syndrome, Meconium.mp OR Syndrome, Meconium Aspiration.mp OR Meconium Aspiration.mp OR Aspiration, Meconium.mp OR Meconium Inhalation.mp 2013 AND exp Infant, Newborn/ OR exp Infant/ OR Infant, Newborn.mp OR Infants, Newborn.mp OR Newborn Infant.mp OR Newborn Infants. mp OR Newborns.mp OR Newborn.mp OR Neonate.mp OR Neonates.mp OR Infant.mp OR Infants.mp AND exp Risk Factors/ OR Risk Factors.mp OR Factor, Risk.mp OR Risk Factor.mp OR Social Risk Factors.mp OR Factor, Social Risk.mp OR Factors, Social Risk.mp OR Risk Factor, Social.mp OR Risk Factors, Social.mp OR Social Risk Factor.mp OR Health Correlates.mp OR Correlates, Health.mp OR Population at Risk.mp OR Populations at Risk.mp OR Risk Scores.mp OR Risk Score.mp OR Score, Risk. mp OR Risk Factor Scores.mp OR Risk Factor Score.mp OR Score, Risk Factor.mp 1312081

Scopus 515

(TITLE-ABS-KEY ("Meconium aspiration syndrome" OR "Meconium aspiration syndrome" OR "Meconium aspiration syndrome" OR "Aspiration Syndrome, Meconium" OR "Syndrome, Meconium Aspiration" OR "Meconium Aspiration" OR "Aspiration, Meconium" OR "Meconium Inhalation") AND TITLE-ABS-KEY ("Newborn" OR "Infant" OR "Infant, Newborn" OR "Infants, Newborn" OR "Newborn Infants" OR "Newborn Infants" OR "Newborns" OR "Newborn" OR "Newborn" OR "Neonate" OR "Neonates" OR "Infant" OR "Infant" OR "Infants, Newborn" OR "Infants") AND TITLE-ABS-KEY ("Risk Factors" OR "Risk Factors, Social Risk Factors" OR "Risk Factor, Social" OR "Risk Factors, Social Risk Factor" OR "Risk Factor") OR "Risk Factor" OR "Risk Factor" OR "Risk Factor" OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Facto

Cochrane 46

Search Name: Date Run: 01/06/2022 01:41:22

Comment:

ID Search Hits

- #1 MeSH descriptor: [Meconium Aspiration Syndrome] this term only 105
- #2 (Meconium Aspiration Syndrome):ti,ab,kw OR (Meconium Inhalation):ti,ab,kw OR (Meconium Aspiration):ti,ab,kw OR (Aspiration, Meconium):ti,ab,kw OR (Aspiration Syndrome, Meconium):ti,ab,kw 311
- #3 (Syndrome, Meconium Aspiration):ti,ab,kw 256
- #4 {OR #1, #2, #3} 311
- #5 MeSH descriptor: [Infant, Newborn] explode all trees 17497

#6 (Infants, Newborn):ti,ab,kw OR (Newborns):ti,ab,kw OR (Newborn):ti,ab,kw OR (Newborn Infants):ti,ab,kw 33140

#7 (Newborn Infant):ti,ab,kw OR (Neonate):ti,ab,kw 23111

- #8 {OR #5, #6, #7} 33803
- #9 MeSH descriptor: [Risk Factors] explode all trees 26247

#10(Populations at Risk):ti,ab,kw OR (Population at Risk):ti,ab,kw OR (Correlates, Health):ti,ab,kw OR (Health Correlates):ti,ab,kw OR(Risk Factor):ti,ab,kw86352

#11(Factor, Risk):ti,ab,kw OR (Risk Factors, Social):ti,ab,kw OR (Social Risk Factor):ti,ab,kw OR (Risk Factor, Social):ti,ab,kw OR(Factors, Social Risk):ti,ab,kw50942

#12 (Factor, Social Risk):ti,ab,kw OR (Social Risk Factor):ti,ab,kw OR (Risk Factor Score):ti,ab,kw OR (Risk Fact

#13 (Risk Scores):ti,ab,kw OR (Score, Risk Factor):ti,ab,kw OR (Score, Risk):ti,ab,kw 43540

#14 {OR #9, #10, #11, #12, #13} 131016

#15 {AND #4, #8, #14} 46

Table S1 Summary of excluded fully read studies

Authors	Title	Year	Journal
Choi W., <i>et al.</i>	Risk factors differentiating mild/moderate from severe meconium aspiration syndrome in meconium-stained	2015	Obstetrics & Gynecology Science
	neonates		
Kalra V. K., <i>et al.</i>	Change in neonatal resuscitation guidelines and trends in incidence of meconium aspiration syndrome in	2020	Journal of Perinatology
	California		
Sandal G, <i>et al.</i>	The admission rate in neonatal intensive care units of newborns born to adolescent mothers	2011	Journal of Maternal-Fetal and Neonatal Medicine
Shah N, <i>et al.</i>	Comparision of obstetric outcome among teenage and non-teenage mothers from three tertiary care	2011	Journal of the Pakistan Medical Association
	hospitals of Sindh, Pakistan		
Wertheimer A, et al.	The effect of meconium-stained amniotic fluid on perinatal outcome in pregnancies complicated by preterm	2020	Archives of Gynecology and Obstetrics
	premature rupture of membranes		
Persson M, <i>et al.</i>	Maternal Overweight and Obesity and Risks of Severe Birth-Asphyxia-Related Complications in Term Infants:	2014	PLoS Medicine
	A Population-Based Conort Study in Sweden		
Hofer N, <i>et al.</i>	Meconium aspiration syndrome - A 21-years' experience from a tertiary care center and analysis of risk	2013	Klinische Padiatrie
Lin H. C, <i>et al.</i>	Meconium aspiration syndrome: Experiences in Taiwan	2008	Journal of Perinatology
Mohammad N, <i>et al.</i>	Meconium stained liquor and its neonatal outcome	2018	Pakistan Journal of Medical Sciences
Hiersch L, <i>et al.</i>	Meconium-Stained Amniotic Fluid and Neonatal Morbidity in Low-Risk Pregnancies at Term: The Effect of	2017	American Journal of Perinatology
	Gestational Age		
Pariente Gali, <i>et al.</i>	Meconium-stained amniotic fluidrisk factors and immediate perinatal outcomes among SGA infants	2015	The Journal of Maternal-fetal & Neonatal Medicine
Raman Ts Raghu and Jayaprakash D G	Neonatal outcome in meconium stained deliveries - a prospective study	1997	Medical Journal, Armed Forces India
Shah S C, <i>et al.</i>	Neonatal outcome of macrosomia	2020	Journal of Nepal Paediatric Society
lanssen P.A. et al	Outcomes of planned home births versus planned hospital births after regulation of midwifery in British	2002	CMAI
	Columbia	2002	
Malik A S. <i>et al</i>	Prelabour runture of membranes and neonatal morbidity in level II nursery in Kelantan	1994	The Medical journal of Malaysia
		1006	Australian and New Zaaland Jawrad of Obstativias and
Orbaniak K 5, <i>et al.</i>	Hisk factors for meconium-aspiration syndrome	1990	Australian and New Zealand Sournal of Obstetrics and Gynaecology
Addisu Dagne, et al	Prevalence of meconium stained amniotic fluid and its associated factors among women who gave birth at	2018	BMC pregnancy and childbirth
Addisu Dagrie, et al.	term in Felege Hiwot comprehensive specialized referral hospital. North West Ethiopia: a facility based cross-	2018	BINC pregnancy and childbirth
	sectional study		
Adhikari M, <i>et al.</i>	Meconium aspiration in South Africa	1995	South African Medical Journal
Adhikari S <i>et al</i>	Morbidities and Outcome of a Neopatal Intensive Care in Western Neoal	2017	The Journal of the Nenal Health Research Council
		2017	
Ahi S, et al.	Correlation between Maternal Vitamin D and Thyroid Function in Pregnancy with Maternal and Neonatal Outcomes: A Cross-Sectional Study	2022	International Journal of Endocrinology
Arbib N. at al	The pro-gentational trial services and high density linearization chalasteral ratio is approxisted with advarge	2020	International Journal of Oursealogy and Obstatrica
Arbib N, et al.	perinatal outcomes: A retrospective cohort analysis	2020	international Journal of Gynecology and Obstetrics
Palaah K. at al	Accessment of Neonatel Respiratory Distance Incidences with Causes, Martality and Marhidity in a Tartiany	2020	lournal of Pharmacoutical Passarah International
Baloch R, et al.	Care Hospital	2020	Journal of Fharmaceutical Research International
Baseer Khaled A et al	Risk Factors of Respiratory Diseases Among Neonates in Neonatal Intensive Care Unit of Open University	2020	Annals of Global Health
Susser Milliou A, et al.	Hospital, Egypt	2020	, anas or Global Health
Beaver K M and Wright I P	Evaluating the effects of birth complications on low self-control in a sample of twins	2005	International Journal of Offender Therapy and
Beaver K in and Wright J P	Evaluating the enects of birth complications of low sen-control in a sample of twins	2005	Comparative Criminology
Bonny BS at al	Meconium aspiration - role of obstetric factors and suction	1087	Australian and New Zealand Journal of Obstatrics and
Benny F 3, et al.		1907	Gynaecology
Biorkman K and Wesstrom J	Risk for girls can be adversely affected post-term due to underestimation of gestational age by ultrasound in	2015	Acta Obstetricia et Gynecologica Scandinavica
	the second trimester	2010	nota obototnota or aynocologica obanamavida
Bogomazova I M. <i>et al.</i>	Neonatal meconium aspiration: Risk factors and adaptation by the newborns	2019	Obstetrics, Gynecology and Reproduction
	The approximation between placente approximation of the markers and composite adverse delivery	2021	
Bowe S, et al.	outcome of a likely placental cause in healthy post-date pregnancies	2021	Acta Obstetricia el Gynecologica Scandinavica
Brockleburst P. et al	Perinatal and maternal outcomes by planned place of birth for healthy women with low risk pregnancies: The	2012	BM-L (Opline)
	Birthplace in England national prospective cohort study	2012	
Caughey A B. et al.	Neonatal complications of term pregnancy: Bates by gestational age increase in a continuous, not threshold	2005	American Journal of Obstetrics And Gynecology
	fashion	2000	Amonoan boarnar of obstantias find ayricology
Cavallin E. <i>et al.</i>	Bisk factors for mortality among neonates admitted to a special care unit in a low-resource setting	2020	BMC Preanancy and Childbirth
Chand Saraan et al	Factors Loading To Macanium Appiration Sundrome in Term, and Dest term Nacantae	2010	
		2019	
Cheng Yvonne W, et al.	The association between persistent occiput posterior position and neonatal outcomes	2006	Obstetrics and Gynecology
Colvin Z, <i>et al.</i>	Duration of labor induction in nulliparous women with hypertensive disorders of pregnancy and maternal and	2020	Journal of Maternal-Fetal and Neonatal Medicine
	neonatal outcomes		
Conway D L, <i>et al.</i>	Isolated oligohydramnios in the term pregnancy: is it a clinical entity?	1998	Journal of Maternal-Fetal and Neonatal Medicine
Currie J and Rossin-Slater M	Weathering the storm: hurricanes and birth outcomes	2013	Journal of Health Economics
Dargaville P A and Copnell B	The epidemiology of meconium aspiration syndrome: Incidence, risk factors, therapies, and outcome	2006	Pediatrics
Darling E K. <i>et al.</i>	Distance from Home Birth to Emergency Obstetric Services and Neonatal Outcomes: A Cohort Study	2019	Journal of midwifery & women's health
	Incidence of and factors associated with meconium staining of the ampiotic fluid in a Nigerian Liniversity	2006	Journal of Obstatrics and Gunaecology
David A N, et al.	Teaching Hospital	2000	Journal of Obstetrics and Gynaecology
De Oliveira C. A. <i>et al</i>	Hypertensive syndromes during pregnancy and perinatal outcomes	2006	Revista Brasileira de Saude Materno Infantil
	The impact of Neoretel Decuseitation Dreament equivalence on martelity and markidity of neuroper inferte with	2000	
Duran R, <i>et al.</i>	perinatal asphyxia	2008	Brain & Development
Espishaira M.C. at al	Maganium appiration sundrame, the experience of a tertiany conter	2011	Povisto Portugueso do poumologio
		2011	
Fedakar A	The incidence and clinical features of meconium aspiration syndrome: A two-year neonatal intensive care	2019	European Research Journal
		0010	
Firdaus U, <i>et al.</i>	Meconium stained amniotic fluid: A clinical study of maternal and neonatal attributes	2013	Current Pediatric Research
Fischer C, <i>et al.</i>	A Population-Based Study of Meconium Aspiration Syndrome in Neonates Born between 37 and 43 Weeks	2012	International Journal of Pediatrics
Gluck O, <i>et al.</i>	Bloody amniotic fluid during labor - Prevalence, and association with placental abruption, neonatal morbidity, and adverse pregnancy outcomes	2019	European Journal of Obstetrics & Gynecology and
Gonen N, <i>et al.</i>	Placental Histopathology and Pregnancy Outcomes in "Early" vs. "Late" Placental Abruption.	2021	Reproductive Sciences
Gould J B, <i>et al</i> .	Cesarean delivery rates and neonatal morbidity in a low-risk population	2004	Obstetrics and Gynecology
Gupta P, <i>et al.</i>	Clinical and biochemical asphyxia in meconium stained deliveries	1998	Indian Pediatrics
Gupta R and Cabacungan E T	Neonatal Birth Trauma: Analysis of Yearly Trends, Risk Factors, and Outcomes	2021	Journal of Pediatrics
Gupta S K. <i>et al.</i>	Meconium aspiration syndrome in infants of HIV-positive women: A case-control study	2016	Journal of Perinatal Medicine
Gupta V et al	Meconium stained amniotic fluid: antenatal intranartum and neonatal attributes	1996	Indian Pediatrics
	Drimony opportion position in and devide anti-	0015	Roual Madical Invent
Hashim N, <i>et al.</i>	Primary cesarean section in grandmultiparity	2015	Rawal Medical Journal
Hofer N, <i>et al.</i>	Inflammatory indices in meconium aspiration syndrome	2016	Pediatric Pulmonology
Horgan M J, <i>et al.</i>	The relationship of thrombocytopenia to the onset of persistent pulmonary hypertension of the newborn in	1985	New York State Journal of Medicine
	the meconium aspiration syndrome		
Khazardoost S, <i>et al.</i>	Risk factors for meconium aspiration in meconium stained amniotic fluid	2007	Journal of Obstetrics and Gynaecology
Kominiarek M, <i>et al.</i>	Gestational weight gain and obesity: Is 20 pounds too much?	2013	American Journal of Obstetrics and Gynecology
Lewis L, <i>et al.</i>	Obstetric and neonatal outcomes for women intending to use immersion in water for labour and birth in	2018	Australian and New Zealand Journal of Obstetrics and
	Western Australia (2015-2016): A retrospective audit of clinical outcomes		Gynaecology
Oddie S J	Perspective on meconium staining of the amniotic fluid	2010	Archives of Disease in Childhood: Fetal and Neonatal
			Edition
Paz Y, et al.	Variables associated with meconium aspiration syndrome in labors with thick meconium	2001	European Journal of Obstetrics and Gynecology and
			Reproductive Biology
Perlman J N	Maternal fever and neonatal depression: Preliminary observations	1999	Clinical Pediatrics
Pourcyrous M, <i>et al.</i>	Significance of serial C-reactive protein responses in neonatal infection and other disorders	1993	Pediatrics
Qian L. et al.	Current status of neonatal acute respiratory disorders: A one-year prospective survey from a Chiposo	2010	Chinese Medical Journal
· · · , - · ·· ·	neonatal network		
Sandstrom A. et al.	Durations of second stage of labor and pushing, and adverse neonatal outcomes: a population-based cohort	2017	Journal of Perinatology
	study		
Saunders K	Should we worry about meconium? A controlled study of neonatal outcome	2002	Tropical Doctor
Schneiderman M and Balavla J	A comparative study of neonatal outcomes in placenta previa versus cesarean for other indication at term	2013	Journal of Maternal-Fetal and Neonatal Medicine
Shishayan MK at al	The according of heir coloring during programmy with an analysis of a sector of the individual terms	2004	
Shishavan ivi K, et al.	me association of nair coloring during pregnancy with pregnancy and neonatal outcomes: A cross-sectional study	2021	memanonal Journal or Women's Health and Reproduction Sciences
Shreetha M. at al	Profile of asphyviated babies at Tribhuwan University Teaching Usersite	2000	Journal of Nanal Pandiatria Sociation
		2009	
Smid Marcela C, <i>et al.</i>	Maternal Super Obesity and Neonatal Morbidity after Term Cesarean Delivery	2016	American Journal of Perinatology
Spain, J. E, <i>et al.</i>	Risk factors for serious morbidity in term nonanomalous neonates	2015	American Journal of Obstetrics and Gynecology
Swain P K and Thapalial A	Meconium stained amniotic fluid - A potential predictor of Meconium Aspiration Syndrome	2008	Journal of Nepal Paediatric Society
Tay, S. K.	Spurious labor: A high risk factor for dysfunctional labor and fetal distress	1991	International Journal of Gynecology and Obstetrics
Thornton Patrick D. et al	Meconium aspiration syndrome: Incidence and outcomes using discharge data	2019	Early Human Development
Tuuli Methodius C. et al	Limbilical Cord Arterial Lactate Compared With pH for Prodicting Noopatal Morhidity at Torm	2014	Obstetrics and Gynecology
		· · · · · · · · · · · · · · · · · · ·	

Author, year	Is the case definition adequate	Representativeness of the cases	Selection of Controls	Definition of Controls	Comparability of cases and controls on the basis of the design or analysis	Ascertainment of exposure	Same method of ascertainment for cases and controls	Non-Response rate	Total
Alchalabi 1999 (9)				*	*	*	*	*	5
Amitai Komem 2022 (4)		*		*	**	*	*	*	7
Avula 2017 (5)		*		*	*	*	*	*	6
Bhat 2008 (6)		*		*	*	*	*	*	6
Gad 2020 (7)				*	**	*	*	*	6
Gurubacharya 2015 (10)		*		*	*	*	*	*	6
Lee 2016 (43)		*		*	*	*	*	*	6
Liu 2002 (8)		*		*	*	*	*	*	6
Mehar 2016 (21)				*	*	*	*	*	5
Meydanli 2001 (11)				*	*	*	*	*	5
Oliveira 2019 (12)		*		*	*	*	*	*	6
Paudel 2020 (16)		*		*	**	*	*	*	7
Rossi 1989 (13)				*	*	*	*	*	5
Usta 1995 (14)				*	*	*	*	*	5
Vivian-Taylor 2011 (18)	*	*	*	*	**	*	*	*	9
Yoder 2002 (15)		*		*	*	*	*	*	6
Yokoi 2021 (22)		*		*	**	*	*	*	7

Author, y	Representativeness of the exposed cohort	Selection of the non- exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	Total
Andersson 2022 (40)	*	*	*	*	**	*	*	*	9
Ashwal 2014 (27)	*	*	*	*	*	*	*	*	8
Ashwal 2018 (23)	*	*	*	*	*	*	*	*	8
Ashwal 2022 (28)	*	*	*	*	**	*	*	*	9
Bailey 2021 (29)	*	*	*	*	**	*	*	*	9
Blankenship 2020 (30)	*	*	*	*	×	*	*	*	8
Blomberg 2014 (41)	*	*	*	*	**	*	*	*	9
Cassidy 1985 (31)	*	*	*	*	*	*	*	*	8
Cedergren 2004 (42)	*	*	*	*	**	*	*	*	9
Cedergren 2006 (43)	*	*	*	*	**	*	*	*	9
Cederholm 2005 (44)	*	*	*	*	**	*	*	*	9
Cheng 2012 (45)	*	*	*	*	**	*	*	*	9
Chiruvolu 2018 (37)	*	*	*	*	**	*	*	*	9
Clausson 1999 (46)	×	*	*	*	×	*	*	*	8
De los Santos-Garate 2011 (17)	×	*	*	*	**	*	*	*	9
Ding 2021 (1)	×	*	*	*	**	*	*	*	9
Greenwood 2003 (32)	×	*	*	*	×	*	*	*	8
Flemming 2020 (47)		*	*	*	×	*	*	*	7
Johnson 2005 (48)	*	*	*	*	**	*	*	*	9
King 2012 (38)	*	*	*	*	**	*	*	*	9
Knight 2017 (49)	*	*	*	*	**	*	*	*	9
Kortekaas 2020 (50)	*	*	×	*	**	*	*	*	9
Levin 2020 (39)	*	*	×	*	*	*	*	*	8
Li 2019 (51)	*	*	*	*	**	*	*	*	9
Lindegren 2017 (52)	*	*	*	*	**	*	*	*	9
Lindegren 2020 (20)	*	*	*	*	**	*	*	*	9
Narchi 2010 (33)	*	*	*	*	**	*	*	*	9
Persson 2016 (53)	*	*	*	*	**	*	*	*	9
Petrova 2001 (54)	*	*	*	*	**	*	*	*	9
Polnaszek 2018 (19)	*	*	*	*	**	*	*	*	9
Pyykonen 2018 (55)	*	*	*	*	**	*	*	*	9
Rietveld 2015 (56)	*	*	*	*	**	*	*	*	9
Roos 2011 (57)	*	*	*	*	**	*	*	*	9
Salihu 2011 (58)	*	*	*	*	**	*	*	*	9
Stotland 2006 (34)	*	*	*	*	**	*	*	*	9
Tyrberg 2013 (59)	*	*	*	*	**	*	*	*	9
Usher 1988 (35)	*	*	*	*	**	*	*	*	9
Ward 2022 (36)	*	*	*	*	**	*	*	*	9

Table S3 Results of the risk of bias assessment of cohort studies using the Newcastle - Ottawa quality assessment scale assessment tool

Study or Subgroup	log[Odds Ratio]	SE	BMI≽30 kg/m ² Total	BMI<30 kg/m ² Total	Weight	Odds Ratio IV, Random, 95% Cl	Odd: IV, Rand	s Ratio om, 95% Cl	
Amitai 2021	0.5291	0.2323	3327	8529	15.8%	1.70 [1.08, 2.68]			
Cedergren 2004 (1)	1.0473	0.2946	3386	526038	13.8%	2.85 [1.60, 5.08]			
Cedergren 2004 (2)	1.0543	0.1521	12402	526038	18.2%	2.87 [2.13, 3.87]		-	
Narchi 2010	1.9601	0.5577	804	4859	7.4%	7.10 [2.38, 21.18]			
Oliveira 2019	0.1398	0.1398	37	50	18.5%	1.15 [0.87, 1.51]		+	
Polnaszek 2018	0.5481	0.5489	11	5	7.6%	1.73 [0.59, 5.07]	-	+	
Salihu 2011	0.3507	0.1349	26954	90022	18.7%	1.42 [1.09, 1.85]		-	
Total (95% CI)			46921	1155541	100.0%	2.01 [1.39, 2.92]		•	
Heterogeneity: Tau ² =	0.18; Chi ² = 31.04,	df = 6 (F	P < 0.0001); I ² = 8 ⁴	1%			0.002 0.1	1 10	500
Test for overall effect: 2	Z = 3.67 (P = 0.000	12)					Favours [experimental]	Favours [control]	500
Footnotes (1) RMI > 40									

(1) BMI > 40 (2) BMI 35.1-40

Figure S1 Forest Plot for maternal body mass index (BMI) \geq 30 kg/m².

		;	>34 years	Control		Odds Ratio	Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI	
2.1.1 Analyzed group									
Blomberg 2014 (1)	0.392	0.0903	63163	300822	27.2%	1.48 [1.24, 1.77]		+	
Blomberg 2014 (2)	0.5988	0.1796	10634	300822	18.9%	1.82 [1.28, 2.59]		-	
Kortekaas 2020 (3)	0.1135	0.0528	286717	1321366	30.2%	1.12 [1.01, 1.24]		•	
Kortekaas 2020 (4)	0.5254	0.1263	40909	1321366	23.8%	1.69 [1.32, 2.17]		+	
Subtotal (95% CI)			401423	3244376	100.0%	1.46 [1.15, 1.85]		◆	
Heterogeneity: Tau ² =	0.05; Chi ² = 17.66	df = 3 (P	= 0.0005); I	²= 83%					
Test for overall effect:	Z = 3.11 (P = 0.002	2)							
	-								
2.1.2 Studies with un	ivariate effect size	e for displ	ay						
Gurubacharya 2015	0.207	0.7551	25	772	0.0%	1.23 [0.28, 5.40]			
Subtotal (95% CI)			0	0		Not estimable			
Heterogeneity: Not ap	plicable								
Test for overall effect:	Not applicable								
Total (95% CI)			401423	3244376	100.0%	1.46 [1.15, 1.85]		◆	
Heterogeneity: Tau ² =	0.05; Chi ² = 17.66	df = 3 (P	= 0.0005); (²= 83%			t t		
Test for overall effect:	Z = 3.11 (P = 0.002	2)					0.01 0.1 1	10	100
Test for subaroup diff	erences: Not appli	cable					Favours [experimental]	Favours [control]	
Footnotes									
(1) 35-39 years old									
(2) 40+ years old									
(3) 35-39 years old									
(4) 40+ years old									

Figure S2 Forest Plot for maternal age >34 years old.

			Previous c-delivery	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.1.1 Analyzed studie	es						
Amitai 2021	0.6206	0.4634	1066	10790	3.2%	1.86 [0.75, 4.61]	<u> </u>
Andersson 2022	0.2241	0.0845	55717	79160	96.2%	1.25 [1.06, 1.48]	
Ashwal 2022	1.1086	1.116	337	1892	0.6%	3.03 [0.34, 27.00]	
Subtotal (95% CI)			57120	91842	100.0%	1.27 [1.08, 1.50]	◆
Heterogeneity: Tau ² =	0.00; Chi ² = 1.32,	df = 2 (P	= 0.52); I ² = 0%				
Test for overall effect:	Z = 2.92 (P = 0.00	4)					
3.1.2 Studies with un	ivariate effect siz	e for disp	olay				
Lee 2016	-1.4271	1.6215	15	103	0.0%	0.24 [0.01, 5.76]	
Usta 1995	1.1537	0.3457	145	767	0.0%	3.17 [1.61, 6.24]	
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Not applicable						
Total (95% CI)			57120	91842	100.0%	1.27 [1.08, 1.50]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 1.32,	df = 2 (P	= 0.52); I ² = 0%				
Test for overall effect:	Z = 2.92 (P = 0.00	4)					Eavours [experimental] Eavours [control]
Test for subaroup diff	ferences: Not appli	icable					r avours (experimental) - Pavours (control)

Figure S3 Forest Plot for previous caesarean delivery.

			Maternal inflammatory response	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Tota	I Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
4.2.1 Maternal fever							
Amitai 2021	0.3577	0.65	236	3 11548	6.6%	1.43 [0.40, 5.11]	
Ashwal 2018	1.3962	0.866	309	3 618	0.0%	4.04 [0.74, 22.05]	
Oliveira 2019	1.4633	0.7315	11	55	0.0%	4.32 [1.03, 18.12]	
Petrova 2001 (1)	1.0613	0.0801	278	3 11452	46.2%	2.89 [2.47, 3.38]	
Petrova 2001 (2)	0.5481	0.3278	39	3 1074	18.8%	1.73 [0.91, 3.29]	+ • <u>-</u>
Subtotal (95% CI)			553	3 24074	71.6%	2.37 [1.57, 3.58]	◆
Heterogeneity: Tau ² =	0.06; Chi ² = 3.38,	df = 2 (P =	= 0.18); l ² = 41%				
Test for overall effect:	Z = 4.08 (P < 0.00	01)					
4.2.2 Chorioamnionti	s						
Usta 1995	1.0852	0.4159	80) 857	0.0%	2.96 [1.31, 6.69]	
Yoder 2002	-0.0619	0.3646	221	1205	0.0%	0.94 [0.46, 1.92]	
Yokoi 2021	0.6043	0.2239	602	2 734	28.4%	1.83 [1.18, 2.84]	
Subtotal (95% CI)			602	2 734	28.4%	1.83 [1.18, 2.84]	◆
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.70 (P = 0.00	7)					
Total (95% CI)			1155	j 24808	100.0%	2.20 [1.55, 3.13]	•
Heterogeneity: Tau ² =	0.06; Chi ² = 6.50,	df = 3 (P :	= 0.09); I ² = 54%				
Test for overall effect:	Z = 4.40 (P < 0.00)	01)					Equation 1 10 100
Test for subgroup diff	erences: Chi² = 0.3	70, df = 1	(P = 0.40), I ² = 0%				Favours (experimental) Favours (control)
Footnotes							
(1) Term							
(2) Preterm							

Figure S4 Forest Plot for maternal inflammatory response.

				Smoking	Control		Odds Ratio	Odds Ratio	
_	Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
	5.1.1 Analyzed studies	s							
	Vivian-Taylor 2011	0.3853	0.0549	139200	735665	100.0%	1.47 [1.32, 1.64]		
	Subtotal (95% CI)			139200	735665	100.0%	1.47 [1.32, 1.64]	•	
	Heterogeneity: Not app	olicable							
	Test for overall effect: 2	Z = 7.02 (P < 0.00	001)						
	5 4 0 00 V								
	5.1.2 Studies with unit	variate effect size	e for disj	play					
	Amitai 2021	1.5831	0.4316	204	11652	0.0%	4.87 [2.09, 11.35]		
	Oliveira 2019	0.5933	0.6564	11	76	0.0%	1.81 [0.50, 6.55]		
	Usta 1995	0.3646	0.3328	193	754	0.0%	1.44 [0.75, 2.76]		
	Subtotal (95% CI)			0	0		Not estimable		
	Heterogeneity: Not app	olicable							
	Test for overall effect: N	Vot applicable							
	Total (95% CI)			139200	735665	100.0%	1.47 [1.32, 1.64]		
	Heterogeneity: Not app	olicable							
	Test for overall effect: 2	Z = 7.02 (P < 0.00	001)					Equate [experimental] Equate [control]	
	Test for subaroup diffe	rences: Not appli	cable					r avours (experimental) - Pavours (control)	

Figure S5 Forest Plot for maternal smoking.

			Primipara	Multipara		Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
6.1.1 Analyzed studie	s							
Amitai 2021	0.3436	0.6428	5736	6120	0.6%	1.41 [0.40, 4.97]		
Vivian-Taylor 2011	0.3507	0.049	360999	516038	99.4%	1.42 [1.29, 1.56]		
Subtotal (95% CI)			366735	522158	100.0%	1.42 [1.29, 1.56]	•	
Heterogeneity: Tau ² =	0.00; Chi ² = 0.00, (df = 1 (P =	: 0.99); l ² =	0%				
Test for overall effect:	Z = 7.18 (P < 0.000	01)						
6.1.2 Studies with un	ivariate effect size	e for displ	lay					
Gurubacharya 2015	0.131	0.2946	480	313	0.0%	1.14 [0.64, 2.03]		
Lee 2016	-0.3425	1.6143	95	23	0.0%	0.71 [0.03, 16.80]		
Oliveira 2019	0.5365	0.049	61	23	0.0%	1.71 [1.55, 1.88]		
Yoder 2002	0.0488	0.2688	545	881	0.0%	1.05 (0.62, 1.78)		
Subtotal (95% CI)			0	0		Not estimable		
Heterogeneity: Not ap	plicable							
Test for overall effect:	Not applicable							
Total (95% CI)			366735	522158	100.0%	1.42 [1.29, 1.56]	•	
Heterogeneity: Tau ² =	0.00: Chi ² = 0.00. (df = 1 (P =	: 0.99); l ² =	0%				-
Test for overall effect:	7 = 7.18 (P < 0.00)	001	//				0.01 0.1 1 10 1	00
Test for subaroun diff	erences: Not annli	ahle					Favours [experimental] Favours [control]	
reactor aupuroup uni	erences. Nut appli	abie						

Figure S6 Forest Plot for nulliparous.

			Oligohydramnios	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
7.1.1 Analyzed studies	s						
Amitai 2021	0.8416	0.5899	201	11583	44.2%	2.32 [0.73, 7.37]	
Ashwal 2014	0.8671	0.5253	987	22280	55.8%	2.38 [0.85, 6.66]	+
Subtotal (95% CI)			1188	33863	100.0%	2.35 [1.09, 5.08]	
Heterogeneity: Tau ² = I	0.00; Chi ² = 0.00,	df = 1 (P	= 0.97); l² = 0%				
Test for overall effect: 2	Z = 2.18 (P = 0.03))					
7.1.2 Studies with univ	variate effect siz	e for disp	olay				
Avula 2017	1.0332	0.5221	28	132	0.0%	2.81 [1.01, 7.82]	
Cassidy 1985	1.1086	1.6474	100	100	0.0%	3.03 [0.12, 76.51]	
Yoder 2002	1.5129	0.4664	38	1388	0.0%	4.54 [1.82, 11.33]	
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not app	olicable						
Test for overall effect: N	Not applicable						
Total (95% CI)	0.00.058-0.00	df - 1 /P	1188 - 0.07\:15 - 0%	33863	100.0%	2.35 [1.09, 5.08]	
Test for overall effect: 2 Test for subgroup diffe	Z = 2.18 (P = 0.03) rences: Not appli	cable	- 0.57),1 = 0%				0.01 0.1 1 10 100 Favours [experimental] Favours [control]

Figure S7 Forest Plot for oligohydramnios.

			Induction	No induction		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Amitai 2021	0.3075	0.4008	7	10956	4.1%	1.36 [0.62, 2.98]	
Cheng 2012 (1)	-1.204	0.233	23963	177733	8.0%	0.30 [0.19, 0.47]	
Cheng 2012 (2)	-0.5621	0.1438	30263	48518	11.3%	0.57 [0.43, 0.76]	-
Cheng 2012 (3)	-0.0834	0.3649	17379	2739	4.7%	0.92 [0.45, 1.88]	
Knight 2017 (4)	-1.5141	0.4023	3715	55946	4.1%	0.22 [0.10, 0.48]	
Knight 2017 (5)	-0.6539	0.202	5908	28140	9.1%	0.52 [0.35, 0.77]	
Knight 2017 (6)	-0.5621	0.1936	7254	6276	9.4%	0.57 [0.39, 0.83]	
Lindegren 2021	-0.0514	0.261	13330	45634	7.1%	0.95 [0.57, 1.58]	
Pyykonen 2018 (7)	-0.9176	0.4078	6874	205270	4.0%	0.40 [0.18, 0.89]	
Pyykonen 2018 (8)	-0.8226	0.3779	5533	155339	4.5%	0.44 [0.21, 0.92]	
Pyykonen 2018 (9)	-0.9443	0.3413	5104	106784	5.2%	0.39 [0.20, 0.76]	
Pyykonen 2018 (10)	-0.7785	0.3325	5568	64356	5.3%	0.46 [0.24, 0.88]	
Pyykonen 2018 (11)	-0.0728	0.2158	10127	27035	8.6%	0.93 [0.61, 1.42]	
Vivian-Taylor 2011	-0.4943	0.0528	218617	658236	14.6%	0.61 [0.55, 0.68]	•
Total (95% CI)			353642	1592962	100.0%	0.56 [0.47, 0.68]	•
Heterogeneity: Tau ² =	0.06: Chi ² = 32.48.	. df = 13 (P = 0.002	$ ^2 = 60\%$			
Test for overall effect: 2	Z = 5.99 (P < 0.000	001)					0.01 0.1 1 10 100
							Favours [experimental] Favours [control]
E e ete ete e							

Footnotes (1) 39 week (2) 40 weeks (3) 41 weeks (4) 39 weeks (5) 40 weeks (6) 41 weeks (7) 40+0-40+2 (8) 40+3-40+5 (9) 40+6-41+1 (10) 41+2-41+4 (11) 41+5-42+0

Figure S8 Forest Plot for induction of labor.

			C-section I	non-C-section		Odds Ratio	Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl		
9.2.1 Analyzed studi	es								
Amitai 2021	1.1151	0.2388	1767	10088	51.3%	3.05 [1.91, 4.87]			
Yokoi 2021	0.708	0.2474	240	1096	48.7%	2.03 [1.25, 3.30]			
Subtotal (95% CI)			2007	11184	100.0%	2.50 [1.68, 3.73]	•		
Heterogeneity: Tau ² =	= 0.02; Chi ² = 1.40,	df = 1 (P	= 0.24); l ² = 2	29%					
Test for overall effect	Z = 4.50 (P < 0.00	001)							
9.2.2 Studies with ur	nivariate effect siz	e for disp	olay						
Alchalabi 1999	1.5892	0.4942	50	294	0.0%	4.90 [1.86, 12.91]			
Bhat 2008	0.9243	0.3261	45	364	0.0%	2.52 [1.33, 4.78]			
Liu 2002	0.4886	0.485	118	566	0.0%	1.63 [0.63, 4.22]			
Meydanli 2001	1.2169	0.6657	35	35	0.0%	3.38 [0.92, 12.45]			
Oliveira 2019	0.4121	0.4542	36	42	0.0%	1.51 [0.62, 3.68]			
Usta 1995	1.8469	0.3394	205	732	0.0%	6.34 [3.26, 12.33]			
Yoder 2002	0.7885	0.3537	198	1228	0.0%	2.20 [1.10, 4.40]			
Subtotal (95% CI)			0	0		Not estimable			
Heterogeneity: Not a	oplicable								
Test for overall effect	Not applicable								
Total (95% CI)			2007	11184	100.0%	2.50 [1.68, 3.73]			
Heterogeneity: Tau ² = 0.02; Chi ² = 1.40, df = 1 (P = 0.24); l ² = 29%									
Test for overall effect	Z = 4.50 (P < 0.00		Favours [experimental] Favours [control]						
Test for subaroup dif	ferences: Not appli	cable					, areas feeting		

Figure S9 Forest Plot for cesarean delivery.

Figure S10 Forest Plot for thick meconium.

	Abnormal fetal heart rate		Cont	rol		Odds Ratio	Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl				
11.1.1 Data before 90	s										
Rossi 1989	16	190	6	48	10.7%	0.64 [0.24, 1.74]					
Subtotal (95% CI)		190		48	10.7%	0.64 [0.24, 1.74]					
Total events	16		6								
Heterogeneity: Not ap	Heterogeneity: Not applicable										
Test for overall effect:	Z = 0.87 (P = 0.39)										
11.1.2 Data after 90s											
Alchalabi 1999	10	89	9	255	11.4%	3.46 [1.36, 8.82]					
Amitai 2021	20	900	58	10956	16.3%	4.27 [2.56, 7.13]					
Gurubacharya 2015	15	21	14	66	9.6%	9.29 [3.04, 28.33]					
Lee 2016	5	18	7	100	8.2%	5.11 [1.41, 18.49]					
Meydanli 2001	9	25	6	47	9.0%	3.84 [1.18, 12.55]					
Oliveira 2019	15	21	14	66	9.6%	9.29 [3.04, 28.33]					
Usta 1995	5	20	34	883	10.0%	8.32 [2.86, 24.23]					
Yoder 2002	47	712	14	714	15.2%	3.53 [1.93, 6.48]					
Subtotal (95% CI)		1806		13087	89.3%	4.70 [3.50, 6.32]	•				
Total events	126		156								
Heterogeneity: Tau ² = 0.00; Chi ² = 5.51, df = 7 (P = 0.60); l ² = 0%											
Test for overall effect:	Z = 10.28 (P < 0.0000	1)									
Total (95% CI)		1996		13135	100.0%	4.13 [2.56, 6.65]	•				
Total events	142		162								
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.30; Chi ² = 19.68, df = 8 (P = 0.01); I ² = 59%										
Test for overall effect:	Z = 5.82 (P < 0.00001)		Equation of the second								
Test for subaroup diffe	erences: Chi ² = 14.06.	df = 1 (P	= 0.0002	2). I ² = 92	2.9%		Favours (experimental) Favours (control)				

Figure S11 Forest Plot for abnormal fetal heart rate.

	Male		Male Female			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Amitai 2021	37	6006	41	5847	10.2%	0.88 [0.56, 1.37]	
Gad 2020	12	51	10	50	2.7%	1.23 [0.48, 3.18]	
Liu 2002	13	351	11	333	3.6%	1.13 [0.50, 2.55]	
Mehar 2016	11	249	16	150	3.8%	0.39 [0.17, 0.86]	
Oliveira 2019	15	45	14	42	3.1%	1.00 [0.41, 2.44]	
Paudel 2020	71	32401	51	27661	13.9%	1.19 [0.83, 1.70]	
Usta 1995	24	451	15	486	5.3%	1.76 [0.91, 3.41]	
Vivian-Taylor 2011	1209	449875	940	427162	39.1%	1.22 [1.12, 1.33]	•
Yoder 2002	31	677	30	749	8.2%	1.15 [0.69, 1.92]	
Yokoi 2021	56	733	32	603	10.1%	1.48 [0.94, 2.31]	+
Total (95% CI)		490839		463083	100.0%	1.15 [0.98, 1.36]	•
Total events	1479		1160				
Heterogeneity: Tau ² =	0.02; Ch	i ² = 12.16,					
Test for overall effect:	Z=1.74	(P = 0.08)	Favours [experimental] Favours [control]				

Figure S12 Forest Plot for gender.

	Gestational age ≥	42 wks	Gestational age < 42 wks		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Avula 2017	2	4	19	156	2.8%	7.21 [0.96, 54.24]		
De los 2011	12	388	78	12603	18.9%	5.12 [2.77, 9.49]		
Gurubacharya 2015	2	41	45	694	5.1%	0.74 [0.17, 3.16]		
Mehar 2016	1	7	26	392	2.5%	2.35 [0.27, 20.22]		
Paudel 2020	10	1459	112	58603	17.8%	3.60 [1.88, 6.90]	_ _	
Usher 1988	6	340	15	7322	10.4%	8.75 [3.37, 22.70]		
Vivian-Taylor 2011	174	19882	1975	857155	42.5%	3.82 [3.27, 4.47]		
Total (95% CI)		22121		936925	100.0%	4.03 [2.84, 5.71]	•	
Total events	207		2270					
Heterogeneity: Tau ² =	0.07; Chi ² = 9.35, df		1					
Test for overall effect: Z = 7.83 (P < 0.00001)							Favours [experimental] Favours [control]	,

Figure S13 Forest Plot for post-term (gestational age ≥42 weeks).

	SG	A	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Ashwal 2022	18	109	3	55		Not estimable	
Avula 2017	18	109	3	55	0.7%	3.43 [0.96, 12.19]	
Cassidy 1985	1	100	0	100	0.1%	3.03 [0.12, 75.28]	
Usta 1995	7	120	32	817	1.7%	1.52 [0.66, 3.52]	
Vivian-Taylor 2011	380	86477	1769	790300	97.4%	1.97 [1.76, 2.20]	
Total (95% CI)		86806		791272	100.0%	1.97 [1.76, 2.20]	•
Total events	406		1804				
Heterogeneity: Tau ² =	0.00; Chi	² = 1.17,	df = 3 (P				
Test for overall effect:	Z=12.10	(P < 0.0	10001)	Favours [experimental] Favours [control]			

Figure S14 Forest Plot for small for gestational age (SGA).

Figure S15 Forest Plot for Apgar <7 at 5 min.