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Supplementary

Appendix 1

In general, the registration problem is formulated as an 
optimization problem which maximizes a cost function 
C(T; IF, IM) with respect to the transform T. The transform 
T is obtained by optimizing the control point location in a 
manner which maximizes the similarity metric between the 
fixed image (IF) and the moving image (IM),
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where P(T) is a regularization term which constrains non-
rigid deformation and α is a weighting factor which balances 
the similarity metric S(T; IF, IM)  and the regularization term 
P(T). We model the non-rigid transform T with a B-Splines 
based deformation field, where parameter μ models the 
transformation T. Finding the optimal transformation T̂  
therefore is an optimization problem, determining the 
parameter μ that maximizes the cost function C(μ; IF, IM),
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or
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In every iteration k, the current parameter μk is updated 
by adding a small step in direction of the derivative of the 
cost function /C µ∂ ∂ ,
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where αk> 0 is the size of the step which changes in every 
iteration. Klein et al. (37) proved that using a decay of αk 

according to ( )k
aa

k A γ=
+ , where α>0, A≥1, and 0 ≤ y ≤1 are 

user-predefined constants, the convergence rate significantly 
reduces computation time without affecting the final result. 
Based on this result, we used the stochastic gradient descent 
in our study.
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