Appendix 1

Derivation of Eq. [2]

The probability density function (PDF) $p_{|\tilde{A}|}(|\tilde{A}|)$ of the amplitude component of noiseless OCT signal $|\tilde{A}|$ follows the
Rayleigh distribution (14):

$$
\begin{equation*}
p_{|\tilde{A}|}(|\tilde{A}|)=\frac{2|\tilde{A}|}{v^{2}} \exp \left(-\frac{|\tilde{A}|^{2}}{v^{2}}\right) \tag{S1}
\end{equation*}
$$

According to the definition, $a_{0}=\frac{|\tilde{A}|}{s}$ and $i S N R=\frac{s^{2}}{s^{2}+v^{2}}$, the PDF of a_{0} can be expressed in terms of a_{0} and $i S N R$:

$$
\begin{equation*}
p_{A_{0}}\left(a_{0}\right)=\frac{2 i S N R \cdot a_{0}}{1-i S N R} e^{-\frac{i S N R}{1-i S N R} a_{0}^{2}} \tag{S2}
\end{equation*}
$$

Derivation of Eq. [3]

For signal in static region, in the temporal dimension, the resultant OCT signal \tilde{X} is the sum of the constant phasor \tilde{A} and the white Gaussian noise \tilde{n}. We assume the direction of the constant phasor as the real-axis for simplicity. The joint PDF $p_{\tilde{X}}(x, y)$ for the real and imaginary part of \tilde{X} satisfies $(14,34)$:

$$
\begin{equation*}
p_{\tilde{X}}(x, y)=\frac{1}{\pi s^{2}} \exp \left[-\frac{(x-|\tilde{A}|)^{2}+y^{2}}{s^{2}}\right] \tag{S3}
\end{equation*}
$$

where x and y are defined as the real and imaginary part of \tilde{X}. By transforming Eq. [S3) into the polar coordinate, the PDF $p_{\tilde{X}}(|\tilde{X}|, \theta)$ of \tilde{X} can be expressed in terms of the amplitude $|\tilde{X}|$ and angle θ of \tilde{X} :

$$
\begin{equation*}
p_{\tilde{X}}(|\tilde{X}|, \theta)=\frac{1}{\pi s^{2}} \exp \left[-\frac{|\tilde{X}|^{2}+|\tilde{A}|^{2}-2|\tilde{X}||\tilde{A}| \cos \theta}{s^{2}}\right] \tag{S4}
\end{equation*}
$$

The marginal PDF $p_{|\tilde{X}|}(|\tilde{X}|)$ of the amplitude $|\tilde{X}|$ can be obtained by integrating over θ :

$$
\begin{align*}
& p_{|\tilde{X}|}(|\tilde{X}|)=\int_{-\pi}^{\pi} p_{\tilde{X}}(|\tilde{X}|, \theta) d \theta \\
& =\frac{1}{\pi s^{2}} \exp \left(-\frac{|\tilde{X}|^{2}+|\tilde{A}|^{2}}{s^{2}}\right) \int_{-\pi}^{\pi} \exp \left(\frac{2|\tilde{X}||\tilde{A}| \cos \theta}{s^{2}}\right) d \theta=\frac{2}{s^{2}} \exp \left(-\frac{|\tilde{X}|^{2}+|\tilde{A}|^{2}}{s^{2}}\right) I_{0}\left(\frac{2|\tilde{X}||\tilde{A}|}{s^{2}}\right) \tag{S5}
\end{align*}
$$

where $I_{0}(\cdot)$ is the zeroth-order modified Bessel function of the first kind. According to the definition, $x_{0}=\frac{|\tilde{X}|}{s}$ and $a_{0}=\frac{|\tilde{A}|}{s}$, Eq. [S5) can be simplified as:

$$
\begin{equation*}
p_{X_{0} \mid A_{0}=a_{0}}\left(x_{0}\right)=2 x_{0} e^{-x_{0}^{2}-a_{0}^{2}} I_{0}\left(2 x_{0} a_{0}\right) \tag{S6}
\end{equation*}
$$

Derivation of Eq. [7]

By setting $i S N R \rightarrow 1$ in Eq. [6), the asymptotic decorrelation $\overline{D_{d y}}$ can be calculated as following:

$$
\begin{equation*}
\overline{D_{d y}} \rightarrow 1-\frac{\pi}{4} \int_{0}^{+\infty}\left[L_{0.5}\left(-a_{0}^{2}\right)\right]^{2} \delta\left(a_{0}\right) d a_{0}=1-\frac{\pi}{4}\left[L_{0.5}\left(-a_{0}^{2}\right)\right]^{2}=1-\frac{\pi}{4} \approx 0.22, \text { a.s. } \tag{S7}
\end{equation*}
$$

where the Rayleigh distribution $p_{A_{0}}\left(a_{0}\right)=\frac{2 i S N R \cdot a_{0}}{1-i S N R} e^{-\frac{i S N R}{1-i S N R} a_{0}^{2}}$ approaches the delta function $\delta\left(a_{0}\right)$ when iSNR approaches 1.

Derivation of Eq. [10]

Given the normalized amplitude of the noiseless OCT signal a_{0}, the PDF of the decorrelation $D\left(x_{0}(t)\right)=1-i S N R^{*} x_{0}(t) \sqrt{2 S N R^{*}-x_{0}^{2}(t)}$ for OCT signals in static region can be expressed as a function of $x_{0}(t)$:

$$
\begin{equation*}
p_{D\left(x_{0}(t)\right) S N R^{*}}\left(x_{0}(t)\right)=p_{X_{0} \mid A_{0}=a_{0}}\left(x_{0}(t)\right) p_{X_{0} \mid A_{0}=a_{0}}\left(x_{0}(t+1)\right) \sqrt{1+\left(\frac{\partial x_{0}(t+1)}{\partial x_{0}(t)}\right)^{2}} . \tag{S8}
\end{equation*}
$$

Furthermore, a_{0} follows a Rayleigh distribution determined by the local SNR. Taking this factor into consideration, the complete expression of Eq . $[\mathrm{S} 8]$ is given by:

$$
\begin{align*}
& p_{D\left(x_{0}(t)\right) \mid S N R^{*}}\left(x_{0}(t)\right)=\int_{0}^{1} p_{\text {isnr }}(i S N R) d i S N R \int_{0}^{+\infty} p_{A_{0}}\left(a_{0}\right) d a_{0} \\
& p_{X_{0} \mid A_{0}=a_{0}}\left(x_{0}(t)\right) p_{X_{0} \mid A_{0}=a_{0}}\left(x_{0}(t+1)\right) \sqrt{1+\left(\frac{\partial x_{0}(t+1)}{\partial x_{0}(t)}\right)^{2}} \tag{S9}
\end{align*}
$$

