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Supplementary

Appendix 1 Forward model with cylindrical, restricted diffusivity muscle model

Following the signal equation of normalized diffusivity signal Si from intracellular muscle SM,i and extracellular fluid, SF,i 

from eq. [1], SM,i is defined radially as an infinite cylinder with impermeable transverse boundaries and axially with Gaussian 
diffusivity D//, where r is the cylinder radius, gradient vector  g

 , and the pulse width δ and mixing time ∆. By accounting for its 
radial gradient magnitude 2g⊥  and axial gradient magnitude 2

/ /g , the natural logarithm of SM,i can be expressed as a summation 
of radial and axial terms. The radial term is derived from Neuman(30), and includes terms for the intracellular water 
diffusivity D0 and 2

mα , which is the m-th root of the derivative of the Bessel function J such that J'1 ( 2
mrα )=0:
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[1]
While SF,i is defined as:
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Appendix 2 Multi-compartment model 

For KRes×NRes anisotropic, KHin isotropic, KFre isotropic and KNoise isotropic tissue compartments, each with fRes,j,n, fHin,k, fFre,k, fFat,k, 
compartment fractions, the sum of each tissue is defined by:
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Each of the anisotropic compartments has pre-defined axial/parallel and radial/orthogonal diffusivities (λ//, λ⊥), whereas 
each of the isotropic compartments has solely a mean diffusivity (λ) defined. For a maximum b-value, b and for each 
normalized gradient vector q , radial vector u  and the model’s signal estimate ( ŝ ) is defined as
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To adapt the method for multi-b-valued muscle diffusion, where tissue anisotropy would be less than that in the brain 
and where fewer diffusion-encoding directions would typically be used, a model with far fewer compartments and fewer 
directionalities was proposed. In multi-b-valued acquisition, b-values smaller than the maximum b-value were created by 
q-vectors with a squared magnitude less than one. The composition of the compartments and optimization parameter values 
are listed in Table 1. A wide range of assumed fractional anisotropy (0.11-1.00) was used in the restricted compartments to 
account for the wide range of FA observed in the literature. 
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Appendix 3 Precision and bias error 

Propagation of variance was used to convert units from each metric M∈ {fRes, fHin, fFre, fFat, MD, AD, RD, FA} to that of r, using 

the derivative,  ( )M r
r

∂
∂

. Precision error εM,n for a given metric and simulation n was defined as the root-mean-square of the 

metric variance  ( )2
,  M n rσ   summed across all r values:
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The bias error, βM,N, followed the same approach, except that bias was defined as the error resulting from varying one 
parameter, N, which was either SNR, ρ, D0 or D//, keeping other parameters constant. To compute bias, the metric variance, 
 ( )2

,   M N rσ  was defined as that from one of the parameters SNR, ρ, D0 or D//: 
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