Supplementary

Appendix 1 Forward model with cylindrical, restricted diffusivity muscle model

Following the signal equation of normalized diffusivity signal S; from intracellular muscle S,,; and extracellular fluid, Sy,
from eq. [1], S, is defined radially as an infinite cylinder with impermeable transverse boundaries and axially with Gaussian
diffusivity D,,, where r is the cylinder radius, gradient vector g, and the pulse width J and mixing time A. By accounting for its

radial gradient magnitude g} and axial gradient magnitude g/, the natural logarithm of S,,; can be expressed as a summation
of radial and axial terms. The radial term is derived from Neuman(30), and includes terms for the intracellular water

diffusivity D, and @ , which is the m-th root of the derivative of the Bessel function J such that J', (ar)=0:
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While S, is defined as:
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Appendix 2 Multi-compartment model

For K, xNy,, anisotropic, Ky, isotropic, Ky, isotropic and Ky, isotropic tissue compartments, each with fr;. fiiinss frreks Srars
compartment fractions, the sum of each tissue is defined by:
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Each of the anisotropic compartments has pre-defined axial/parallel and radial/orthogonal diffusivities (A,, A,), whereas
each of the isotropic compartments has solely a mean diffusivity () defined. For a maximum b-value, 5 and for each

normalized gradient vector ¢, radial vector # and the model’s signal estimate (§) is defined as
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To adapt the method for multi-b-valued muscle diffusion, where tissue anisotropy would be less than that in the brain
and where fewer diffusion-encoding directions would typically be used, a model with far fewer compartments and fewer
directionalities was proposed. In multi-b-valued acquisition, b-values smaller than the maximum b-value were created by
g-vectors with a squared magnitude less than one. The composition of the compartments and optimization parameter values
are listed in Table 1. A wide range of assumed fractional anisotropy (0.11-1.00) was used in the restricted compartments to
account for the wide range of FA observed in the literature.
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Appendix 3 Precision and bias error
Propagation of variance was used to convert units from each metric M€ {fz., frin> frrer fruy MD, AD, RD, FA} to that of 7, using
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the derivative, # Precision error ¢, for a given metric and simulation n was defined as the root-mean-square of the

or

metric variance o}, . (r) summed across all 7 values:
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The bias error, f,,y, followed the same approach, except that bias was defined as the error resulting from varying one

parameter, N, which was either SNR, p, D, or D,,, keeping other parameters constant. To compute bias, the metric variance,

O',,ZLN (r) was defined as that from one of the parameters SNR, p, D, or D,
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