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Supplementary

Table S1 Sample size of artificial intelligence studies related to stroke

Title Journal Train data Test data

Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using  
Encoder-Decoder Convolutional Network

Stroke 296 134

Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT Radiology 157 100

Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large 
Vessel Occlusion

Stroke 250 74

Machine Learning Approach to Identify Stroke Within 4.5 Hours Stroke 299 56

Figure S1 The receiver operating characteristic (ROC) curve of 
the residual neural (ResNet-50) and visual geometry group (VGG-
16) network classifiers shows the false positive rate (x-axis) vs. the 
true positive rate (y-axis). The areas under the ROC curve (AUCs) 
for the ResNet-50 and VGG-16 networks were both superior in 
being able to identify lesions in acute ischemic stroke (AIS) image 
slices. 

Figure S2 Challenge examples in ischemic stroke segmentation. 
In example 1, the yellow arrow identifies the hyperintensity that 
is a true acute ischemic stroke lesion, and the red arrows identify 
hyperintensity due to magnetic susceptibility artifacts. In example 2, 
the red arrows identify hyperintensity due to the T2 shine-through 
effect.
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Figure S3 Scatter plots of lesions volume in the hemorrhagic infarction (HI) test set. (A) The volume (median and interquartile range) of 
HI in the test set was measured by the ground truth (n=65). (B) The volume in small HI lesion volume cases (n=41).

Convolutional neural network (CNN) architecture

Unlike the classical networks, such as AlexNet and visual 
geometry group network (VGG-16), we used a global 
average pooling layer followed by a dense layer, which 
indicated the probability that the current slice contained 
a lesion, instead of using several fully connected layers 
at the top of the convolution layer. Each image slice was 
resampled to a voxel size of 0.87×0.87 mm and then cropped 
to a matrix size of 256×256. All of the images were then 
normalized to images with zero mean and unit variance. 

In the training stage, the feature maps in the last 
convolution layer were processed by a global average 
pooling (GAP) layer, which output the mean value of each 
feature map. The mean values were further processed by 
a dense layer for classification. In the testing stage, we 
directly output the feature maps of the last convolutional 
layer and used the weighted sum as the localization results 
to generate a CAM. The weights were obtained by copying 
the weights of the last dense layer. A probability map could 
then be obtained by normalizing the pixel intensities as 
follows:
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where xi is the intensity of pixel i on the CAM and  ˆclsy  is the 
output value of the classifier, which indicates the probability 
that any lesion is found in the slice.

CNNs, such as VGG-16 and residual neural network 
(ResNet-50), were initially designed for classification. 

In the classification task, determining the kind of object 
presented in the image is the goal; therefore, it is not 
necessary to preserve the spatial location information of an 
object. These CNNs were thus designed with very small-
sized feature maps in the last several convolution layers. 
In our task, we aimed to determine two issues: whether 
a lesion can be detected and the location of the lesion. 
Therefore, we needed to extract the sematic information 
and simultaneously preserve the spatial information. To this 
end, we used a truncated version of the well-applied CNN 
by only using the output of the convolution layer, which 
provided feature maps with heights and widths that were at 
most 8 times smaller than the original input.

Transfer learning techniques in which the network 
weights were initialized through use of the ImageNet 
pretrained weights  were used to improve the performance 
of the network on small data sets. The whole network was 
then fine-tuned by using the stochastic gradient descent 
(SGD) method with the Nesterov momentum as the 
optimizer, an initial learning rate of 0.001 and a momentum 
of 0.9. During training, 300 image slices were randomly 
chosen from the training set for validation. A dynamic 
training policy was adopted, in which we monitored the loss 
value for the validation samples at the end of each training 
epoch, and the learning rate was reduced by a factor of 
 0.1  if the validation loss did not improve for 10 epochs. 
Data augmentation methods, including random flipping 
along 2 axes and random rotation, were adopted to prevent 
overfitting, where the rotation were restricted within a 
range of [−30°,30°]. An early-stopping method, in which the 
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training is stopped if no progress is made in 30 epochs, was 
also adopted to avoid overfitting.

Statistical analysis

To evaluate the performance of the CAM-based methods, 
we proposed several lesion-wise metrics using 3D connected 
component analysis. In particular, for a single subject, a 
probability map was first generated for each individual 
slice, and the probability maps were stacked on the z-axis 
to generate the predicted probability map of the subject. 
We then converted the predicted probability map to a 
binary segmentation map by thresholding and subsequently 
measured the per-subject mean numbers of false-positive 
lesions (mFP-L), false-negative lesions (mFN-L), and true-
positive lesions. A false-negative lesion (FN-L) was defined 
as a connected volume on the ground truth label that had 
no overlapping volume with any connected volumes on 
the predicted segmentation. A false-positive lesion (FP-L)  
was defined as a connected volume on the predicted 
segmentation that had no overlapping volume with that 
on the ground truth. If a region on both the ground truth 
and predicted segmentation overlapped with each other, we 

defined it as a true-positive lesion (TP-L). The mFP-L and 
the mFN-L were then calculated by respectively averaging 
the FN-Ls and FN-Ls for all tested subjects. We further 
defined the lesion-wise sensitivity and precision as follows:

 TPLSensitivity Recall
TPL FNL
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TPL FPL

= =
+

to evaluate the lesion-wise performance. In addition, the 
subject-wise detection rate is important in clinical diagnosis. 
We used the number of failure-to-detect subjects (FD-S) to 
evaluate the subject-level performance.

To verify the consistency of the labels that were twice 
given by the experts, the intraclass correlation coefficient 
(ICC) and κ coefficient were computed between the 2 
lesion measurements. Two-paired-sample Wilcoxon and 
Kruskal-Wallis tests were performed to determine whether 
the VGG-16 and ResNet-50 were significantly different 
in terms of parameters. The full and weak labeling time, as 
well as the human and machine reading time, was compared 
using the 2-paired sample Wilcoxon test.


