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Supplementary

CT acquisition and reconstruction

Three models of CT scanners, including 128-slice 
multidetector CT (Definition AS+, Siemens Healthineers, 
Germany), second generation dual source CT (SOMATOM 
Flash, Siemens Healthineers, Germany) and 256-slice CT 
scanner (Brilliance iCT, Philips Healthcare, USA), were 
employed for CCTA imaging. Beta-blocker (25 to 50 mg, 
Betaloc ZOK; AstraZeneca, China) was administered orally 
one hour prior to the examination in patients with baseline 
heart rate ≥70 bpm and scanned by 128-slice multidetector 
CT and 256-slice CT scanner. For patients scanned by 
dual source CT, beta-blocker was not used. Nitroglycerin 
was given sublingually in all patients from three sites. 
Prospective ECG-triggered sequential acquisition was used 
in all patients with the triggering window covering from 
end-systolic to mid-diastolic phase (from 35% to 75% of 
R-R interval). Same acquisition parameters were used for 
baseline and follow-up CCTA in each individuals.

For 128-s l ice  mult idetector  CT, the  scanning 
parameters were listed as follow: collimation =64×0.6 mm, 
reconstructed slice thickness =0.6 mm, reconstructed slice 
interval =0.5 mm, rotation time =300 ms and application of 
automated tube voltage and current modulation (CAREKv, 
CAREDose 4D, Siemens Healthineers, Germany). The 
reference tube current was set as 250 mAs and the reference 
tube voltage was set as 100 kVp. All CCTA data was 
reconstructed with a smooth kernel (B26f).

For second generation dual source CT, the scanning 
parameters were: collimation =64×0.6 mm, reconstructed 
slice thickness =0.75 mm, reconstructed slice interval =0.5 
mm, rotation time =280 ms and application of automated 
tube voltage and current modulation (CAREKv, CAREDose 
4D, Siemens Healthineers, Germany). The reference tube 
current was set as 350 mAs and the reference tube voltage 
was set as 100 kVp. All CCTA data was reconstructed with 
a medium soft kernel (I26f) and second generation iterative 
reconstruction technique (SAFIRE, strength level 3, 
Siemens Healthineers, Germany).

For 256-slice CT, the scanning parameters were: 
collimation = 128×0.625 mm, reconstructed slice thickness 
= 0.9 mm, reconstructed slice interval = 0.45mm, rotation 
time = 270 ms, tube voltage = 120 kVp, effective tube 
current = 210 mAs. All CCTA data was reconstructed with 
a smooth kernel (XCB) and hybrid iterative reconstruction 
technique (iDose4, Philips Healthcare, USA).

CT-based plaque and FAI analysis

Conventional  qualitat ive and quantitative plaque 
parameters were evaluated via a dedicated plaque analysis 
software (Coronary Plaque Analysis, version 4.3, Siemens 
Healthineers, Germany). The following indices were 
measured and recorded: (I) Diameter stenosis (DS) 
was calculated as (reference diameter – minimal lumen 
diameter)/reference diameter and was measured manually 
with a digital caliper at the narrowest level of the lesion and 
the proximal reference on the cross-sectional images; (II) 
Remodeling index was defined as a maximal lesion vessel 
diameter divided by proximal reference vessel diameter (at 
the site where no plaque component can be detected), with 
positive remodeling (PR) defined as a remodeling index 
≥ 1.1; (III) Low-attenuation plaque (LAP) was defined as 
any voxel <30 HU within a coronary plaque; (IV) Spotty 
calcification (SC) was defined by an intra-lesion calcific 
plaque <3 mm in length that comprised <90 degrees of 
the lesion circumference; (V) Napkin-ring sign (NRS) was 
characterized by a plaque core with low attenuation areas 
on CT surrounded by a rim-like area of higher attenuation 
as previously reported. Lesions with at least two high-risk 
plaque features (PR, LAP, SC and NRS) were deemed high-
risk plaques (HRPs).

A dedicated FAI analysis software (Coronary FAI 
Analysis, version 1.0.2, Siemens Healthineers, Germany) 
was used for quantification. The length of the lesion-based 
perivascular FAI was defined as the length from the proximal 
to the distal shoulder of the lesion, where no plaque could 
be detected. In brief, perivascular adipose tissue was sampled 
radially outward from the outer vessel wall of the plaques 
and measured as voxels with attenuation between −190 HU 
and −30 HU. FAI was defined as the mean CT attenuation 
of adipose tissue, which was within a radial distance from 
the outer vessel wall equal to the diameter of the target 
vessel. For the on-site processing, after CCTA data were 
successfully loaded, the centerline and luminal contours 
for whole coronary tree were automatically generated. The 
centerline and luminal contour are fundamental and critical 
information for computing FAI value. They were manually 
adjusted when needed. Users then identified all stenotic 
lesions from proximal end to distal end, where no plaque 
was present. After then, the radius from the outer vessel 
wall was input to calculate the mean density of tissue with 
CT attenuation between -190 HU and -30 HU within this 



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-21-424

volume of interest. Myocardial tissue adjacent to the vessel 
wall and coronary side branch originated from the vessel of 
interest was manually excluded in all cases when necessary.

CT-FFR measurement

As introduced recently, we used a machine-learning 
based algorithm for CT-FFR simulation (cFFR, version 
3.0, Siemens Healthineers). It’s an alternative to physics-
based approach and can be used on-site to calculate CT-
FFR value. It’s trained using a synthetically generated 
database of 12,000 different anatomies of coronary arteries 
with randomly placed stenosis among different branches 
and bifurcations. A computational fluid dynamics (CFD) 
by solving reduced-ordered Navier-Stokes equations is 
applied to calculate the pressure and flow distribution for 
each coronary tree. Quantitative features of anatomy and 

computed CT-FFR value were extracted for each location 
along the coronary tree. Then deep machine learning model 
is trained by using a deep neural network with four hidden 
layers to learn the relationship between the FFR value and 
quantitative anatomic features.

For the on-site processing, after CCTA data were 
successfully loaded, the centerline and luminal contours 
for whole coronary tree were automatically generated. 
The centerline and luminal contour are fundamental and 
critical information for computing CT-FFR value. They 
were manually adjusted when needed. Users then manually 
identified all stenotic lesions to extract their geometrical 
features required for cFFR algorithm. Finally, those data 
were input into the pre-learned model and cFFR was 
computed automatically at all locations in the coronary 
arterial tree, and the resulting values were visualized by 
color-coded 3D coronary maps.

Table S1 Interobserver reproducibility

ICC 95% CI P value

MLA 0.958 0.946-0.967 <0.001

Total plaque volume 0.863 0.826-0.893 <0.001

Non-calcified component volume 0.861 0.823-0.891 <0.001

LAP volume 0.853 0.816-0.883 <0.001

CT-FFR 0.979 0.967-0.986 <0.001

FAI 0.921 0.899-0.983 <0.001

Kappa 95% CI P value

Spotty calcium 0.944 - <0.001

Napkin-ring sign 0.898 - <0.001

Positive remodeling 0.926 - <0.001

Low attenuation plaque 0.947 - <0.001

CI, Confidence interval; CT-FFR, CT derived fractional flow reserve; FAI, fat attenuation index; ICC, Intraclass correlation coefficient; LAP, 
low attenuation plaque; MLA, Minimal lumen diameter
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Table S2 Intra-observer reproducibility

ICC 95% CI P value

MLA 0.919 0.898-0.936 <0.001

Total plaque volume 0.848 0.806-0.881 <0.001

Non-calcified component volume 0.838 0.793-0.873 <0.001

LAP volume 0.815 0.768-0.853 <0.001

CT-FFR 0.959 0.937-0.972 <0.001

FAI 0.911 0.875-0.936 <0.001

Kappa 95% CI P value

Spotty calcium 0.962 - <0.001

Napkin-ring sign 0.815 - <0.001

Positive remodeling 0.961 - <0.001

Low attenuation plaque 0.938 - <0.001

CI, Confidence interval; CT-FFR, CT derived fractional flow reserve; FAI, fat attenuation index; ICC, Intraclass correlation coefficient; LAP, 
low attenuation plaque; MLA, Minimal lumen diameter.

Table S3 Cox Regression analysis result of Model 3

Characteristics HR 95% CI P value

Hypertension 3.145 1.401-7.065 0.006

Decreased MLA 0.677 0.507-0.905 0.008

High-risk plaque* 2.023 0.927-4.440 0.079

Decreased CT-FFR 2.455 1.131-5.328 0.023

Before 15th month after second CCTA 0.835 0.2581-2.704 0.763

15th month to end 5.838 1.232-27.664 0.026

Increased FAI 2.956 1.472-5.934 0.002

* Defined as patients with presence of at least two high-risk plaque features. CCTA, coronary computed tomography angiography; CI, 
confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, fat attenuation index; HR, hazard ratio; MLA, minimal  
lumen area.
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Table S4 Multivariable Cox regression analysis including Diamond-Forrester score for prediction of MACE

Characteristics HR 95% CI P value

Clinical model

Hypertension 2.595 1.174-5.736 0.018

Dyslipidemia 1.365 0.703-2.651 0.358

Diamond-Forrester score 1.842 0.942-3.601 0.074

Decreased CT-FFR 3.071 1.489-6.376 0.002

Before 15th month after second CCTA 1.091 0.351-3.400 0.879

15th month to end 5.555 1.173-26.309 0.031

Increased FAI 3.129 1.559-6.282 0.001

CCTA, coronary computed tomography angiography; CI, confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, 
fat attenuation index; HR, hazard ratio; MLA, minimal lumen area.


