Appendix 1

Radiomics feature extraction

In this study, 18 first order features, 22 gray-level co-occurrence matrix (GLCM) features, 14 neighboring gray-level dependence matrix (NGLDM), 16 gray-level run length matrix (GLRLM) features, 16 gray-level size zone matrix (GLSZM) features and 14 shape/size features were adopted as the radiomic features (45). A three-dimensional (3D) Coiflet wavelet transform was applied to the DWI images in order to extract the first order features in frequency decomposed images. The frequency components were HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL, where "H" and "L" denote high-pass and low-pass filters, respectively (34). To characterize the textural changes on DWI images over different diffusion gradient (different b values), we measured 8 new sequential features from the 21 b values for each texture feature, including mean, max, min, median, variance, kurtosis, skewness, energy. Therefore, a total of 7076 features were extracted on primary dataset for each tumor with 21 b values and 6,100 features for external testing dataset for each tumor with 17 b values. It should be noticed that the number of radiomics features were different between two datasets. This was due to the different number of b values. However, this problem has been solved during the feature selection procedure by choosing the features from the DWI images of which b values were equal between two datasets.

Appendix 2

Feature Selection procedure

All work in this part was accomplished using an open ML library scikit-learn (ver. 0.22), in Python (32). The whole dataset was split into training set (80 percent) and testing set (20 percent). The external test set included 55 cases on five-fold cross-validation sets. Radiomics features with b values that were not included in the external test were excluded. A five-step rigorous selection process has been implemented both on combined DWI-model features and radiomics features:

Step I WMW U-test

All features of the training data were tested by a non-parametric WMW U-test with a significant setting of P<0.05.

Step II ML methods

On one way, a learning model-based single feature sequencing approach was involved. The idea of this approach was to use Logistic Regression (LR), Support-vector Machine (SVM), K-nearest neighbors (KNN), Random Forests (RF), Naïve Bayes (NB) and Stacking Methods (Stacks) separately as a learning estimator to build a predictive model for each individual feature filtered by step 1.

On the other way, the top features were selected according to scores derived from Lasso, RF and Recursive feature elimination (RFE) methods. Grid search was used on these estimators to define the hyper-parameters of Lasso and RF. Features ranking in Lasso were determined by the final coefficient, and in RF were sorted by their importance. Recursive feature elimination (RFE) model was also applied for selection. RFE creates a model from all features, and then eliminates the least important features in turn by measuring the contribution of each feature in a given model (26). In this study, RideCV was utilized as an underlying function to stabilize it.

In total, 9 ML based selection methods with 5-fold cross-validation performed were used, each providing the top 20 features of this work.

Step III Voting system

A voting system was proposed to find the common features selected by 9 methods mentioned above. We only reserved features with votes >9/2 and 19 features were left for multiparametric DWI based on ML and 14 features left for DWI radiomics.

Step IV Correlation test

The final decision was made by calculating the Pearson correlation coefficient r and eliminate features with r>0.7 according to the rank. After this, 10 and 9 features were selected for multiparametric DWI and radiomics methods, respectively.

Step V Combination and Grouping

Features were combined in accordance with DWI models, where in this study 10 features belong to 5 different DWI models. Based on combination mathematics, there are 2^5 -1=31 types of DWI model combinations. The description of these combinations is simply combining their capitals, such as SC for SEM-model & CTRW-model, SFs for SEM-model & FROC-model & SM model and the like.

In this study, we also aimed to compare with two traditional classification methods. One of traditional method is based on a single DWI model only measuring the average for each parameter shown in Eq. [1] to Eq. [7]. And the other method depends on DWI radiomics features. Therefore, we also trained and tested our estimators on these conventional combinations, which were also grouped following rules stipulated above. The selection procedure for radiomics features followed the same rules except the step 5, we only chose the top 1 to 9 features according to the rank in step 4 on the training set instead. (See *Table S5*, which shows feature combinations of two traditional methods).

References

45. Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numerical algorithms I. Communications on pure and applied mathematics 1991;44:141-83.

Voting Results of Features

Figure S1 The votes of features selected by 9 ML selection methods (step 3).

Table S1 Correlation test results

	Pearson correlation matrix																	
	DDC_min Dc_mi	n βf*_min	ac_kurtosi	sADCS_min	µ_skewness	DK_min	a_skewness	σ_skewness	Ds_mean	αc_median	αc_var	k_median	Ds_min	αc_mean	ac_skewness	βc_var	a_kurtosis	ADC_median
DDC_min	1 0.88108	07 0.547866	5 0.3947538	0.8414184	0.253429131	0.8414184	0.321240678	0.490974359	0.104029	0.4855554	0.6610031	0.587563	0.1599478	0.5824501	0.362759941	0.435051	0.182240221	0.536257366
Dc_min	0.8810807	1 0.657094	7 0.3494493	0.9132883	0.297697103	0.9132883	0.343171208	0.474311275	0.3551752	0.38070135	0.5948554	0.5674203	0.175077	0.4618118	0.329001535	0.6096523	0.203332977	0.549041176
βf*_min	0.5478665 0.65709	47	1 0.2486806	5 0.6338648	0.129205695	0.6338648	0.175528681	0.488938643	0.2721702	0.265729055	0.3497738	0.4577853	0.0395106	0.2915615	0.274598424	0.5820147	0.032292412	0.46968089
ac_kurtosis	0.3947538 0.34944	93 0.248680	16	0.3678287	0.207394817	0.3678287	0.551987294	0.474235638	0.0065027	0.794399189	0.67698	0.7874129	0.0754365	0.8276838	0.958688564	0.2806428	0.35463391	0.808941161
ADCS_min	0.8414184 0.91328	83 0.633864	8 0.3678287	7 1	0.226604814	1	0.292803324	0.455293802	0.3410058	0.375838049	0.6220602	0.5458609	0.1107667	0.463452	0.355409608	0.571527	0.152665357	0.535378527
µ_skewness	0.2534291 0.29769	71 0.129205	0.2073948	0.2266048	1	0.2266048	0.220910547	0.179502319	0.1274533	0.433178985	0.1532537	0.2613249	0.1605273	0.3676551	0.268078053	0.1973063	0.180574349	0.159125801
DK_min	0.8414184 0.91328	83 0.633864	8 0.3678287	7 1	0.226604814	1	0.292803324	0.455293802	0.3410058	0.375838049	0.6220602	0.5458609	0.1107667	0.463452	0.355409608	0.571527	0.152665357	0.535378527
a_skewness	0.3212407 0.34317	12 0.175528	0.5519873	0.2928033	0.220910547	0.2928033	1	0.252266711	0.0840269	0.489442806	0.4645366	0.5831461	0.0862979	0.520765	0.559983311	0.101712	0.855274669	0.584011623
σ_skewness	0.4909744 0.4743	13 0.488938	6 0.4742356	5 0.4552938	0.179502319	0.4552938	0.252266711	1	0.1555649	0.440414111	0.5304539	0.6002326	0.1253808	0.498797	0.489186612	0.3806164	0.061558816	0.622770263
Ds_mean	0.104029 0.35517	52 0.272170	0.0065027	0.3410058	0.127453316	0.3410058	0.084026859	0.155564925	1	0.126437327	0.2679803	0.1216034	0.0605586	0.0347546	0.00268296	0.7827822	0.061850281	0.101579967
αc_median	0.4855554 0.38070	13 0.265729	0.7943992	0.375838	0.433178985	0.375838	0.489442806	0.440414111	0.1264373	1	0.6523146	0.8254703	0.1773121	0.9639402	0.864013804	0.1804959	0.237974246	0.777779164
αc_var	0.6610031 0.59485	54 0.349773	8 0.67698	3 0.6220602	0.153253722	0.6220602	0.464536572	0.530453916	0.2679803	0.652314574	1	0.785901	0.0844488	0.8195331	0.65314769	0.5056715	0.313395889	0.741350071
k_median	0.587563 0.56742	03 0.457785	0.7874129	0.5458609	0.261324905	0.5458609	0.583146072	0.600232625	0.1216034	0.8254703	0.785901	1	0.0079255	0.8647078	0.822287263	0.5385137	0.314511353	0.963861831
Ds_min	0.1599478 0.1750	0.039510	0.0754365	5 0.1107667	0.160527294	0.1107667	0.086297872	0.125380784	0.0605586	0.177312116	0.0844488	0.0079255	1	0.1193631	0.100624986	0.0931557	0.021338513	0.016813582
αc_mean	0.5824501 0.46181	18 0.291561	.5 0.8276838	0.463452	0.367655063	0.463452	0.520765006	0.498797003	0.0347546	0.963940177	0.8195331	0.8647078	0.1193631	1	0.860038643	0.2709265	0.289400549	0.815240214
ac_skewness	0.3627599 0.32900	15 0.274598	4 0.9586886	0.3554096	0.268078053	0.3554096	0.559983311	0.489186612	0.002683	0.864013804	0.6531477	0.8222873	0.100625	0.8600386	1	0.2656724	0.327043339	0.82568054
βc_var	0.435051 0.60965	23 0.582014	7 0.2806428	0.571527	0.197306291	0.571527	0.101711981	0.380616355	0.6827822	0.180495858	0.5056715	0.5385137	0.0931557	0.2709265	0.265672407	1	0.045724646	0.518963128
a_kurtosis	0.1822402 0.2033	33 0.032292	4 0.3546339	0.1526654	0.180574349	0.1526654	0.855274669	0.061558816	0.0618503	0.237974246	0.3133959	0.3145114	0.0213385	0.2894005	0.327043339	0.0457246	1	0.31758627
ADC median	0.5362574 0.54904	12 0.469680	0.8089412	0.5353785	0.159125801	0.5353785	0.584011623	0.622770263	0.10158	0.777779164	0.7413501	0.9638618	0.0168136	0.8152402	0.82568054	0.5189631	0.31758627	1

Pink highlight data are highly colinear features (r>0.7) and blue highlight features are finally selected.

Table S2 Combinations of the subgroups of selected 10 features in multiparametric DWI model

selected by ML										
	S(SEM)	C(CTRW)	F(FROC)	S(SM)	I(IVIM)					
Subgroups	DDC_min	α_{c} kurtosis	$\beta_f^*_min$	σ_skewness	Ds_mean					
(DWImodels)	α_skewness	α_{c} var	µ_skewness		Ds_min					
		β_c_var								
	s	S	F	Ι	С					
Constructions	Ss	Fs	Is	SF	SI	FI	Cs	SC	CF	CI
Combinations	SFs	SsI	FsI	SCs	CFs	CsI	SFI	SCF	SCI	CFI
of subgroups	SFsI	SCFs	SCsI	CFsI	CFsI	SCFI				
	SCFsI									

 Features
 DDC_min
 β_{f_-} min
 α_{c_-} kurtosis
 μ_{s} skewness
 Ds_mean
 α_{s} skewness
 σ_{s} skewness
 α_{c_-} var
 β_{c_-} var
 Ds_min
 β_{c_-} var
 β_{c_-} var

Table S3 Integrated trai	ining and interna	l test results for	each feature	combination and	they were sorted	according to their AUCs on
internal test set						

Easture		Dradiation							
Feature- combination	Feature numbers	methods	trainCV acc	trainCV auc	test acc	test auc	tpr	tnr	Cut-off
ADC	1	LRfold25	0.7939	0.783	0.6	0.6429	0.4286	1	0.872
DDC_min'	1	'model_KNNs'	0.7	0.7994	0.7333	0.7411	0.5714	0.875	0.5455
Ds min'	1	model KNNs'	0.8333	0.9195	0.6667	0.6875	0.8571	0.5	0.6667
βf* min'	1	model_SVMs'	0.7667	0.7638	0.6	0.5982	0.5714	0.625	_
βc var'	1	'model_Stacks'	0.6	0.727	0.6	0.625	0.5714	0.75	0.5601
α skewness'	1	'model RFs'	0.6333	0.8741	0.6	0.5	0.4286	0.75	0.5847
αc var'	1	'model KNNs'	0.6333	0.823	0.5333	0.5982	0.4286	0.875	0.7143
S	1	'model_RFs'	0.6667	0.9782	0.4667	0.6161	0.7143	0.5	0.4431
µ skewness'	1	'model RFs'	0.7	1	0.4667	0.5357	0.5714	0.75	0.74
αc kurtosis'	1	'model LRCVs'	0.6667	0.7425	0.4667	0.5179	0.8571	0.375	0.4511
Ds_aver'	1	'model_RFs'	0.8	0.9253	0.4667	0.5893	0.5714	0.75	0.721
F	2	LRfold5'	0.8382	0.8184	0.6667	0.7679	1	0.5	0.442
SM	2	'LRfold12'	0.8106	0.7921	0.5333	0.6071	0.4286	1	0.8665
S	2	'LRfold24'	0.807	0.8748	0.6667	0.6786	0.8571	0.625	0.4924
SEM	2	'RFfold20'	0.7909	0.7857	0.7333	0.7143	0.7143	0.75	0.5583
DKI	2	'Stackfold12'	0.8376	0.8341	0.6667	0.6071	0.7143	0.75	0.3458
I	2	'KNNfold8'	0.6845	0.731	0.5333	0.5536	0.2857	1	1
Ss	3	'KNNfold24'	0.8376	0.8743	0.6	0.6696	0.4286	0.875	0.7143
FROC	3	'LRfold2'	0.8112	0.8079	0.6667	0.6429	0.4286	0.875	0.5855
IVIM	3	'Stackfold18'	0.7764	0.735	0.4667	0.5357	0.4286	0.875	0.5655
CTRW	3	'Stackfold15'	0.8042	0.7838	0.5333	0.5357	0.8571	0.375	0.5162
sl	3	'RFfold3'	0.7273	0.8385	0.4	0.5268	0.8571	0.375	0.506
Fs	3	'KNNfold3'	0.787	0.8519	0.6667	0.5179	0.5714	0.75	0.5556
С	3	Nlfold5'	0.8182	0.7864	0.5333	0.5179	0.5714	0.625	0.4581
SI	4	'RFfold24'	0.8182	0.8635	0.8667	0.8214	0.7143	0.7143	0.7983
SF	4	'KNNfold24'	0.8312	0.9078	0.7333	0.6518	0.7143	0.7143	0.5294
FI	4	'Stackfold5'	0.7273	0.835	0.5333	0.5714	0.4286	0.4286	0.7126
Cs	4	'KNNfold9'	0.7761	0.8419	0.5333	0.5268	1	1	0.1667
SC	5	'Stackfold1'	0.8921	0.8863	0.7333	0.7857	0.7143	0.875	0.54
CF	5	'KNNfold24'	0.757	0.8509	0.5333	0.6696	1	0.375	0.25
SFs	5	'KNNfold3'	0.8585	0.9007	0.6667	0.625	0.5714	0.75	0.6429
Fsl	5	'RFfold24'	0.9091	0.8587	0.5333	0.625	0.8571	0.5	0.4442
CI	5	'RFfold19'	0.6364	0.7798	0.6	0.6161	0.7143	0.625	0.3205
Ssl	5	'RFfold12'	0.8182	0.8668	0.6	0.6161	0.7143	0.625	0.4288
SCs	6	'Stackfold4'	0.8955	0.8939	0.6667	0.7679	0.7143	0.875	0.5243
SFI	6	'KNNfold24'	0.8273	0.9013	0.6667	0.6518	0.7143	0.625	0.6
CFs	6	'RFfold3'	0.8182	0.858	0.7333	0.5893	0.5714	0.875	0.5739
Csl	6	'Stackfold4'	0.7273	0.8391	0.5333	0.5714	0.7143	0.625	0.4629
SCF	7	'Stackfold4'	0.9091	0.8898	0.8	0.8393	0.8571	0.75	0.5051
CFI	7	'RFfold13'	0.8182	0.8638	0.6667	0.6964	0.5714	0.875	0.5547
SCI	7	'LRfold24'	0.7976	0.8578	0.6667	0.6786	0.7143	0.75	0.491
SFsl	7	'KNNfold3'	0.8718	0.9037	0.6667	0.5982	0.7143	0.625	0.4667
SCFs	8	'Stackfold7'	0.9091	0.9021	0.7333	0.7679	0.5714	0.875	0.5308
CFsI	8	'RFfold3'	0.9091	0.8731	0.6	0.6429	0.7143	0.625	0.3624
SCsl	8	'Stackfold1'	0.9091	0.8815	0.6	0.6429	0.5714	0.75	0.5474
SCFI	9	'LRfold24'	0.8139	0.8727	0.6667	0.6607	0.8571	0.625	0.1751
All features	10	'RFfold24'	0.8755	0.8873	0.6667	0.7321	0.7143	0.75	0.5698

"tpr" refers to the sensitivity and "tnr" refers to the specificity. The highlighted row represents the best prediction model which achieves the highest AUC in internal test set.

DWI model	Mean
ADC	0.9449
IVIM	0.9569
SEM	0.9959
SM	0.9699
DKI	0.9699
FROC	0.9788
CTRW	0.9801

Table S4 R-squared of each DWI model to assess the goodness of fitting

Table S5 Row 'Feature combinations' gives the selected features based on single DWI model and radiomics respectively

DWI models	Traditional r	methods based on the single DWI model		Traditional DWI radiomics	Feature combinations	Serial numbers of selected features	
	Abbreviation	Features	Feature types	Features/serial number			
ADC	Amean	ADC_mean	b =3,500	HHL_Maximum/ ② ; HHL_kurtosis/ ⑧	TOP1	1	
IVIM	Imean	$f_{mean}, D_{S_{mean}}, D_{f_{mean}}$	b =4,000	HHH_Kurtosis/ ⑥	TOP2	12	
SEM	Smean	DDC_mean, α_mean	b =0	HHL_Kurtosis/ ④	TOP3	123	
SM	smean	ADC_{s} mean, σ mean	Sequential	Kurtosis_original_shape_Minor_Axis_ Length/ ① ; Skewness_original_ shape_Minor_AxisLength/ ③	TOP4	1234	
DKI	Dmean	D_{K} mean, K mean		Kurtosis_HHH_Inter-	TOP5	12345	
				quartileRange/ ⑤ ; Skewness_ origianl_glszm_LargeAraHigh- GrayLevelEmphasis/ ⑦	TOP6	023456	
FROC	Fmean	D_{f} mean, β_{c}^{*} mean, μ mean		Skewness_original_shape_ Maximum2DDiameterColumn/	TOP7	1234567	
CTRW	Cmean	D_{c} mean, α_{c} mean, β_{c} aver			TOP8	12345678	
					TOP9	123456789	

The 'serial number ① - ⑨ ' was determined by the ranking after step 4.

Combination name	Feature-num	Prediction estimator	trainCV_acc	trainCV_auc	test_acc	test_auc	best_tpr	best_tnr	Cut-off
Single DWI mo	del								
ADC	1	LRfold25	0.7939	0.783	0.6	0.6429	0.4286	1	0.872
SM	2	LRfold12	0.8106	0.7921	0.5333	0.6071	0.4286	1	0.8665
SEM	2	RFfold20	0.7909	0.7857	0.7333	0.7143	0.7143	0.75	0.5583
DKI	2	Stackfold12	0.8376	0.8341	0.6667	0.6071	0.7143	0.75	0.3458
CTRW	3	Stackfold15	0.8042	0.7838	0.5333	0.5357	0.8571	0.375	0.5162
FROC	3	LRfold2	0.8112	0.8079	0.6667	0.6429	0.4286	0.875	0.5855
IVIM	3	Stackfold18	0.7764	0.735	0.4667	0.5357	0.4286	0.875	0.5655
Radiomics									
TOP6	6	Stackfold3	0.9558	0.9821	0.8	0.8393	0.8571	0.875	0.6111
TOP4	4	LRfold3	0.9421	0.944	0.6667	0.75	1	0.625	0.3141
TOP7	7	Stackfold3	0.9624	0.9551	0.7333	0.75	0.8571	0.625	0.429
TOP5	5	LRfold4	0.9321	0.9399	0.7333	0.75	0.8571	0.75	0.3827
TOP8	8	Stackfold2	0.9761	0.9821	0.8	0.75	0.5714	1	0.595
TOP9	9	Stackfold1	0.9794	0.9868	0.7333	0.6964	0.5714	0.875	0.6148
TOP3	3	LRfold1	0.9082	0.9044	0.6667	0.6607	1	0.375	0.3405
TOP2	2	LRfold10	0.8821	0.8801	0.5333	0.5179	0.4286	0.875	0.7174

Table S6 Internal test results of two traditional DWI methods