

Figure S1 Structural brain MRI images of patient 01. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S2 T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image of patient 02.

Figure S3 Structural brain MRI images of patient 03. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S4 Structural brain MRI images of patient 04. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S5 Structural brain MRI images of patient 05. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S6 Structural brain MRI images of patient 06. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S7 Structural brain MRI images of patient 07. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S8 Structural brain MRI images of patient 08. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S9 Structural brain MRI images of patient 09. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S10 Structural brain MRI images of patient 10. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S11 Structural brain MRI images of patient 11. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S12 Structural brain MRI images of patient 12. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S13 Structural brain MRI images of patient 13. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S14 T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image of patient 14.

Figure S15 Structural brain MRI images of patient 15. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S16 Structural brain MRI images of patient 16. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S17 Structural brain MRI images of patient 17. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S18 Structural brain MRI images of patient 18. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S19 Structural brain MRI images of patient 19. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S20 Structural brain MRI images of patient 20. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S21 Structural brain MRI images of patient 21. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S22 Structural brain MRI images of patient 22. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S23 Structural brain MRI images of patient 23. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S24 Structural brain MRI images of patient 24. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S25 Structural brain MRI images of patient 25. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S26 Structural brain MRI images of patient 26. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S27 Structural brain MRI images of patient 27. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S28 Structural brain MRI images of patient 28. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S29 Structural brain MRI images of patient 29. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S30 Structural brain MRI images of patient 30. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S31 Structural brain MRI images of patient 31. (A) T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) image; (B) Gadolinium-enhanced T1-weighted (Gd-T1w) image.

Figure S32 Patterns of ALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the conventional frequency band (0.01-0.08 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S33 Patterns of ALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the slow-4 frequency band (0.027-0.073 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S34 Patterns of ALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the slow-5 frequency band (0.01-0.027 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S35 Patterns of fALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the conventional frequency band (0.01-0.08 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S36 Patterns of fALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the slow-4 frequency band (0.027-0.073 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S37 Patterns of fALFF that analyzed with removing the first 10 time points and patterns of results that analyzed with removing the first 5 time points in the slow-5 frequency band (0.01-0.027 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S38 Results of the normality test for ALFF values in the Paracentral_Lobule_R in the conventional frequency band (0.01-0.08 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S39 Results of the normality test for ALFF values in the Supp_Motor_Area_R in the slow-4 frequency band (0.027-0.073 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S40 Results of the normality test for ALFF values in the Supp_Motor_Area_L in the slow-5 frequency band (0.01-0.027 Hz). ALFF, amplitude of low-frequency fluctuation.

Figure S42 Results of the normality test for fALFF values in the Frontal_Inf_Oper_R in the conventional frequency band (0.01-0.08 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S41 Results of the normality test for fALFF values in the Cerebelum_9_L in the conventional frequency band (0.01-0.08 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S43 Results of the normality test for fALFF values in the Parietal_Inf_L in the conventional frequency band (0.01-0.08 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S44 Results of the normality test for fALFF values in the Frontal_Inf_Oper_R in the slow-4 frequency band (0.027-0.073 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S46 Results of the normality test for fALFF values in the Occipital_Mid_L in the slow-5 frequency band (0.01-0.027 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S45 Results of the normality test for fALFF values in the Precuneus_R in the slow-4 frequency band (0.027-0.073 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S47 Results of the normality test for fALFF values in the Frontal_Mid_R in the slow-5 frequency band (0.01-0.027 Hz). fALFF, fractional amplitude of low-frequency fluctuation.

Figure S48 The ALFF value of Paracentral_Lobule_R in different frequency bands. ALFF, amplitude of low-frequency fluctuation.

Figure S49 The ALFF value of Supp_Motor_Area_R in different frequency bands. ALFF, amplitude of low-frequency fluctuation.

Figure S50 The ALFF value of Supp_Motor_Area_L in different frequency bands. ALFF, amplitude of low-frequency fluctuation.

Figure S51 The fALFF value of Cerebelum_9_L in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S52 The fALFF value of Frontal_Inf_Oper_R in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S53 The fALFF value of Parietal_Inf_L in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S54 The fALFF value of Frontal_Inf_Oper_R in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S55 The fALFF value of Precuneus_R in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S56 The fALFF value of Occipital_Mid_L in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S57 The fALFF value of Frontal_Mid_R in different frequency bands. fALFF, fractional amplitude of low-frequency fluctuation.

Figure S58 Results of the VBM comparisons between patients with intracranial tuberculosis and healthy controls.

Table S1 Results of partial correlation analysis between aberrant ALFF and neuropsychological performances

	Μ	IMSE	DST_forwards		
	r	Р	r	Р	
НС					
Slow-5					
Supp_Motor_Area_L	0.538	0.004*	-	-	
Patient					
Conventional frequency band					
Paracentral_Lobule_R	-	-	0.524	0.004*	

*P<0.05. ALFF, amplitude of low-frequency fluctuation.

	MMSE		RAVLT_I		RAVLT_II		RAVLT		DST_forwards		MoCA		CDT		SDMT	
	r	Р	r	Р	r	Р	r	Р	r	Р	r	Ρ	r	Р	r	Р
HC																
conventional frequ	iency ba	Ind														
Cerebelum_9_L	-	-	0.514	0.006*	0.447	0.019*	0.532	0.004*	-	-	-	-	-	-	0.413	0.032*
Parietal_Inf_L	0.426	0.027*	-	-	-	-	-	-	-	-	-	-	-	-	-	-
slow-4																
Precuneus_R	-	-	0.414	0.032*	-	-	-	-	-	-	-	-	-	-	-	-
slow-5																
Occipital_Mid_L	-	-	-	-	-	-	-	-	-	-	0.539	0.004*	-	-	-	-
Frontal_Mid_R	-	-	-	-	-	-	-	-	-	-	-	-	-0.501	0.008*	-	-
Patient																
Conventional frequ	uency ba	and														
Frontal_Inf_ Oper_R	-0.451	0.016*	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Slow-4																
Precuneus_R	-	-	-	-	-	-	-	-	-0.389	0.041*	-	-	-	-	-	-

Table S2 Results of partial correlation analysis between aberrant fALFF and neuropsychological performances

fALFF, fractional amplitude of low-frequency fluctuation.

Regions (AAL)	DA	Pea	k MNI Coordinates (i	Chuster Size	De als Truchus	
	DA —	Х	Y	Z	- Cluster Size	i can i-value
Temporal_Inf_L	20	-49.5	-3	-33	249	-5.3566
Temporal_Inf_L	37	-48	-46.5	-21	201	-4.4957
Rectus_R	11	9	31.5	-24	251	-4.7916
Temporal_Sup_R	21	52.5	-13.5	-10.5	372	-5.047
Occipital_Mid_L	19	-33	-88.5	10.5	452	-5.0248
Cingulum_Mid_L	24	-6	-22.5	43.5	563	-4.9851
Cingulum_Mid_R	31	12	-21	40.5	411	-4.8805

Table S3 Results of the VBM comparisons between patients with intracranial tuberculosis and healthy controls

Specific steps for VBM analysis as follows: All the structural images were processed and examined using the CAT12 toolbox (http:// dbm.neuro.uni-jena.de/cat/) implemented in SPM12 (http:// www.fil.ion.ucl.ac. uk/spm/software/spm12/) for VBM analysis running in MATLAB2017b. All images were segmented into grey matter (GM), white matter (WM), and cerebrospinal fluid (GSF), and then underwent a quality control to check sample homogeneity. NO images had to be excluded due to poor quality. All GM scans were smoothed with a Gaussian kernel of 6 mm (FWHM). We applied an absolute masking threshold of 0.1 to the VBM data. After the smooth, GM images were performed two-sample t-tests in RESTplus. TIV as covariates. False discovery rate (FDR) correction was performed and P<0.05 was considered significant.