Supplementary

Appendix 1 Updating ZI

Noting that each group is independent, and removing the irrelevant terms, we have
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Defining DY =D ®D" with the symbol “®” as Kronecker product of matrices, then [1.1] can be updated by
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where EX, 2, B" and 7, are unfolding the && ©,2,B8" and 7" in the 3" mode. To determine the minimal point
of Eq. [1.2], the derivative of Eq. [1.2] should equal to zero. We have
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Therefore, the Z,, canbe updated by
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where 7 is an identity matrix. The tensor Z"Y can be obtained by folding ) at the 3" mode.
Appendix 2 Updating )/
After substituting Eq. [7] into Eq. [9] and removing irrelevant terms, we have
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Assuming the amplitude of boundary gradient are zero, Eq. [2.1] can be further evolved into
S
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where %V Vi~ V(irl),iz,s and 9.Vs Wi = Va0 . To obtain the optimized solution of [2.2], it can be converted into
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Then, two variables F; and 4,¥; are introduced to replace 0,V and Sth . As for the ¢t energy bin, Eq. [2.3] equals to
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where &, >0 is a coupling factor, and Ej, and £,, represent the feedback errors. The objective function Eq. [2.4] can be
divided into the following five sub-problems
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For =" «x, in Eq. [2.5], different energy bins of multi-energy computed tomography (CT) i images correspond to
different values, which can be a limitation in practice. Thus, an adaptive weighting strategy is proposed and given as
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where 77 is an empirical parameter. Using Eq. [2.10] we can obtain weighted factor W, by adaptively adjusted 77, for different
energy bins. For Eq. [2.5], a Fourier transform based alternating minimization (51) is employed to obtain its solution, which
can be given as
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where F, represents Fourier transform, ¢,, 6, and I represent the Fourier transform of operators, “ ¢’ denotes complex
conjugacy and “© ” defines component-wise multiplication, and the division is component-wise as well. As for Eq. [2.6] and

Eq. [2.7], they have closed-form solutions in terms of soft-thresholding filtering:
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Figure S1 Materials decomposition results of preclinical mouse study. The 1% to 3™ columns are bone, soft tissue components, and color
rendering. The corresponding display windows are [0 1] and [0.55 1.1]. A and B are two ROIs of the soft tissue component. ROISs, regions of

interest.

© Quantitative Imaging in Medicine and Surgery. All rights reserved. https://dx.doi.org/10.21037/qims-22-235



