
© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-22-235

Supplementary

Appendix 1 Updating 
l

Noting that each group is independent, and removing the irrelevant terms, we have
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k k k= ⊗D D D  with the symbol “⊗ ” as Kronecker product of matrices, then [1.1] can be updated by
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where ( ) ( ) ( ), ,  and k k k
l l l l      are unfolding the 

( ) ( ) ( ), ,  and k k k
l l l l      in the 3rd mode. To determine the minimal point 

of Eq. [1.2], the derivative of Eq. [1.2] should equal to zero. We have
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Therefore, the (3)lZ  can be updated by
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where I  is an identity matrix. The tensor 
( 1)k
l

+  can be obtained by folding   at the 3rd mode.

Appendix 2 Updating 
After substituting Eq. [7] into Eq. [9] and removing irrelevant terms, we have
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Assuming the amplitude of boundary gradient are zero, Eq. [2.1] can be further evolved into
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where ( )1 1 2 1 21, ,,,= i s i si s i i−∂ − V  and 12 1 22 (, , , 1),= i s i si s i i −∂ − V . To obtain the optimized solution of [2.2], it can be converted into
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Then, two variables 1sF  and 
1i s∂ V  are introduced to replace 

1i s∂ V  and ths . As for the ths  energy bin, Eq. [2.3] equals to
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where 2 0κ >  is a coupling factor, and 1sE  and 2sE  represent the feedback errors. The objective function Eq. [2.4] can be 
divided into the following five sub-problems
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             [2.5]
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For 
1

2

4
s
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=

××
κ

η
κ κ  in Eq. [2.5], different energy bins of multi-energy computed tomography (CT) images correspond to 

different values, which can be a limitation in practice. Thus, an adaptive weighting strategy is proposed and given as
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where η  is an empirical parameter. Using Eq. [2.10] we can obtain weighted factor sw  by adaptively adjusted sη  for different 
energy bins. For Eq. [2.5], a Fourier transform based alternating minimization (51) is employed to obtain its solution, which 
can be given as
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where xF  represents Fourier transform, 
1

ˆ
i∂ , 

2
ˆ

i∂  and Î  represent the Fourier transform of operators, “ ” denotes complex 
conjugacy and “  ” defines component-wise multiplication, and the division is component-wise as well. As for Eq. [2.6] and 
Eq. [2.7], they have closed-form solutions in terms of soft-thresholding filtering:
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Figure S1 Materials decomposition results of preclinical mouse study. The 1st to 3rd columns are bone, soft tissue components, and color 
rendering. The corresponding display windows are [0 1] and [0.55 1.1]. A and B are two ROIs of the soft tissue component. ROIs, regions of 
interest.


