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Appendix 1 

SVM and logistic Regression

Support vector machine (SVM) usually proved the best 
performance when comparing with other popular classification 
problem in the real-world applications. The outstanding 
performance of SVM is due to its advantages of regularization 
and convex optimization (45-48). The kernel function of 
the support vector machine can find a hyperplane with an 
N-dimensional space (N is the number of features). In this 
feature space, the datapoint can be optimally distinct. In SVM, 
different kernel functions are applied to transform the original 
data into specific feature space to select support vectors. 
The generated hyperplanes provided the decision boundaries 
which can optimize the classification of the data points which 
can be distinguished into different classes when they fall on 
the side of the hyperplane. The data points which closer 
to the hyperplanes work as the support vectors which can 
influence the position and orientation of the hyperplane. Based 

on these support vectors, the margin of the classifier can be 
maximized to get the best classification performance. Due to 
the utilization of the hyperplane, the classification performance 
is relatively better than other methods (48). Also, this strategy 
can overcome the overfitting issue during training. But due to 
the complicated settings, the required training dataset needs to 
be larger compared to using other methods. 
Unlike SVM, Linear and logistic regression are popular 
due to the simple implementation (35). We can estimate a 
linear model by searching the parameters to fit a model of 
the straight line in the original data space. Then applying 
the logistic function to the linear mode, logistic regression 
model can be used to differentiate binomial distributions. 
The strategy of logistic function is very simple. The output 
of the linear model is applied to sigmoid function. All values 
are nonlinear rescaled to the range between 0 and 1. Logistic 
regression is one of the simplest methods in ML. With very 
few inputs, a relatively general model can be established. 

Table S1 The model information of MR scanners

Model Manufacturer Address Field strength

Magnetom Sonata Siemens Healthcare Erlangen, Germany 1.5T

Optima MR360 GE Medical Systems Wisconsin, USA 1.5T

Magnetom Trio Siemens Healthcare Erlangen, Germany 3.0T

Signa HDx GE Medical Systems Wisconsin, USA 3.0T

Discovery MR750 GE Medical Systems Wisconsin, USA 3.0T

Discovery MR750w GE Healthcare Japan Corporation Tokyo, Japan 3.0T

uMR 770 United Imaging Healthcare Shanghai, China 3.0T

Supplementary

699
700
701
702
703
704
705
706
707
708
709
710
711
712



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-22-267

Table S2 MRI-Sequence Parameters of the Imaging Protocol

FOV (cm2) Slice thickness (mm) Slice gap (mm) TR/TE (ms)

Cervical vertebra

SAG T2 FRFSE 28×28 3.0 0.5 2700/120

SAG T1 FSE 28×28 3.0 0.5 710/8.0

SAG T2 IDEAL 28×28 3.0 0.5 2500/85

Thoracic vertebra

SAG T2 FSE 36×36 3.0 0.5 2700/120

SAG T1 FSE 36×36 3.0 0.5 700/9.0

SAG T2 IDEAL 36×36 3.0 0.5 2500/85

Lumbar and sacral vertebra

SAG T2 FSE 30×30 4.0 0.5 3100/120

SAG T1 FSE 30×30 4.0 0.5 700/10

SAG T2 FS 30×30 4.0 0.5 3300/85

MRI, magnetic resonance imaging; FOV, field of view; TR, rime to repeat; TE, time to echo; SAG, sagittal; FRFSE, fast relaxation fast spin 
echo; FSE, fast spin echo; IDEAL, iterative decomposition of water and fat with echo asymmetry and least-squares estimation; FS, fat 
suppression.

Table S3 The model information of CT scanners

Model Manufacturer Address

LightSpeed VCT GE Medical System Chalfont St Giles, UK

Discovery CT750 GE Medical System Wisconsin, USA

Sensation Siemens Healthcare Erlangen, Germany

SOMATOM Definition Flash Siemens Healthcare Erlangen, Germany

uCT790 United Imaging Healthcare Shanghai, China
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Table S4 List of 107 radiomics features

1st Order Shape GLCM GLSZM GLRLM GLDM NGTDM

(N=18) (N=14) (N=24) (N=16) (N=16) (N=14) (N=5)

10th percentile Elongation Autocorrelation GLN GLN DE busyness

90th percentile Flatness Cluster Prominence GLNN GLNN DN coarseness

Energy Least Axis Length Cluster Shade GLV GLV DNN complexity

Entropy Major Axis Length Cluster Tendency HGLZE HGLRE DV contrast

Interquartile Range Max 2D diameter (Column) Contrast LAE LGLRE GLN strength

Kurtosis Max 2D diameter (Row) Correlation LAHGLE LRE GLV

MAD Max 2D diameter (Slice) Difference Average LALGLE LRHGLE HGLE

Maximum Max 3D diameter Difference Entropy LGLZE LRLGLE LDE

Mean Mesh Volume Difference Variance SAE RE LDHGLE

Median Minor Axis Length ID SAHGLE RLN LDLGLE

Minimum Sphericity IDM SALGLE RLNN LGLE

Range Surface Area IDMN SZN RP SDE

rMAD Surface Area/Volume ratio IDN SZNN RV SDHGLE

RMS Voxel Volume IMC1 ZE SRE SDLGLE

Skewness IMC2 ZP SRHGLE

Std Inverse Variance ZV SRLGLE

Uniformity Joint Average

Variance Joint Energy

Joint Entropy

Max Probability

MCC

Sum Average

Sum Entropy

Sum of Squares

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run length matrix; GLDM, gray level 
dependence matrix; NGTDM, neighboring gray tone difference matrix.
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