Supplementary

Appendix 1 Features of the dSIR and drSIR filters including use of them for T_{1} mapping

The signals S_{s} and S_{i} for two long TR IR T_{1}-filters with short and intermediate $T I s, I_{s}$ and TI_{i} respectively are given by:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{s}}=1-2 \mathrm{e}\left(-\mathrm{TI}_{\mathrm{S}} / \mathrm{T}_{1}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{S}_{\mathrm{i}}=1-2 \mathrm{e}\left(-\mathrm{TI}_{\mathrm{i}} / \mathrm{T}_{1}\right) \tag{20}
\end{equation*}
$$

Performing the subtraction: magnitude of the IR signal $\left|S_{s}\right|$ in Eq. [19] minus magnitude of the IR signal $\left|S_{i}\right|$ in Eq. [20] gives the signal of the SIR filter $S_{\text {SIR }}$ which is equal to $-S_{s}-S_{i}$ i.e.:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{SIR}}=2 \mathrm{e}\left(-\mathrm{TI}_{\mathrm{S}} / \mathrm{T}_{1}\right)+2 \mathrm{e}\left(-\mathrm{TI}_{\mathrm{i}} / \mathrm{T}_{1}\right)-2 \tag{21}
\end{equation*}
$$

Addition of the magnitudes of the two IR signals $\left|S_{s}\right|$ and $\left|S_{i}\right|$ in Eqs. $[19,20] S_{\text {AIR }}$ is equal to $-S_{s}+S_{i}$ i.e.:

$$
\begin{equation*}
\mathrm{S}_{\text {AIR }}=2 \mathrm{e}\left(-\mathrm{TI}_{S} / \mathrm{T}_{1}\right)-2 \mathrm{e}\left(-\mathrm{TI}_{\mathrm{i}} / \mathrm{T}_{1}\right) \tag{22}
\end{equation*}
$$

Division of the signal of the subtraction filter $\mathrm{S}_{\text {SIR }}$ in Eq. [21] by the signal of the addition filter $\mathrm{S}_{\text {AIR }}$ in Eq. [22] gives the signal of the $S_{\text {dSIR }}$ filter:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{dSIR}}=\frac{\mathrm{e}\left(-\mathrm{TI}_{S} / \mathrm{T}_{1}\right)+\mathrm{e}\left(-\mathrm{TI}_{\mathrm{i}} / \mathrm{T}_{1}\right)-1}{\mathrm{e}\left(-\mathrm{TI}_{S} / \mathrm{T}_{1}\right)-\mathrm{e}\left(-\mathrm{TI}_{\mathrm{i}} / \mathrm{T}_{1}\right)} \tag{23}
\end{equation*}
$$

While this expression is accurate, it does not provide easy insight into the properties of the $S_{\text {dSIR }}$ filter. To do this a linear regression of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ between the end-points of the mD produced by fitting a straight line between the first and last points of the mD (ie first point $\mathrm{x}=\mathrm{TI}_{\mathrm{s}} / \ln 2$ and $\mathrm{y}=1$, and last point $\mathrm{x}=\mathrm{TI}_{\mathrm{i}} / \ln 2$ and $\mathrm{y}=-1$) can be used as an approximation for the $\mathrm{S}_{\text {dSIR }}$ filter so:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{dSIR}} \approx \frac{\ln 4}{\Delta \mathrm{TI}} \mathrm{~T}_{1}-\frac{\Sigma \mathrm{TI}}{\Delta \mathrm{TI}} \tag{24}
\end{equation*}
$$

Where $\Delta \mathrm{TI}=\mathrm{TI}_{\mathrm{s}}-\mathrm{TI}_{\mathrm{i}}$ and $\Sigma \mathrm{TI}=\mathrm{TI}_{\mathrm{s}}+\mathrm{TI}_{\mathrm{i}}$
The same applies to the drSIR filter except that it has a negative slope and a positive offset. Its signal equation is:
$\mathrm{S}_{\text {drSIR }} \approx-\frac{\ln 4}{\Delta \mathrm{TI}} \mathrm{T}_{1}+\frac{\Sigma \mathrm{TI}}{\Delta \mathrm{TI}}$
The expressions in Eq. [24,25] capture four key features of the dSIR filter, firstly, they show linear change of signal with T_{1} in the mD , secondly, they have slopes equal to $\ln 4 / \Delta \mathrm{TI}$ and $-\ln 4 / \Delta \mathrm{TI}$ respectively, thirdly they show high sensitivity to small changes in T_{1} when $\Delta T I$ is small, and fourthly the equations can be used to map T_{1} since for $\mathrm{S}_{\text {dSIR }}$ and $\mathrm{S}_{\text {drIIR }}$:

$$
\begin{align*}
& \mathrm{T}_{1} \approx \frac{\Delta \mathrm{TI}}{\ln 4} \mathrm{~S}_{\mathrm{dSIR}}-\frac{\Sigma \mathrm{TI}}{\ln 4} \tag{26}\\
& \mathrm{~T}_{1} \approx-\frac{\Delta \mathrm{TI}}{\ln 4} \mathrm{~S}_{\mathrm{dISIR}}+\frac{\Sigma \mathrm{TI}}{\ln 4} \tag{27}
\end{align*}
$$

The $\mathrm{S}_{\text {dSIR }}$ and $\mathrm{S}_{\text {drsIR }}$ maps show high contrast and high spatial resolution as for the two source images since they are linear voxel rescalings of these images (e.g., Figure 37) with the two caveats (i) it only applies to $\mathrm{T}_{1} \mathrm{~s}$ in the mD , and (ii) the reasoning applies to long TR IR images. If the TR is not long enough, correction of the T1 values is likely to be needed.

For absolute contrast, Cab from Eqs. [24,25] and using a linear X axis:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ab}}=\Delta \mathrm{S}_{\mathrm{dSIR}} \approx \frac{\ln 4}{\Delta \mathrm{TI}} \Delta \mathrm{~T}_{1} \tag{28}
\end{equation*}
$$

and

$$
\mathrm{C}_{\mathrm{ab}}=\Delta \mathrm{S}_{\mathrm{drSIR}} \approx-\frac{\ln 4}{\Delta \mathrm{TI}} \Delta \mathrm{~T}_{1}
$$

Thus the absolute contrast for the dSIR and drSIR filters is proportional to the reciprocal of $\Delta \mathrm{TI}$ as well as the difference/ change in T_{1}.

Figure S1 Rescaled dSIR image and T_{1} map in a patient with small vessel disease showing T_{1} values within the mD which is in white matter $\left(\mathrm{TI}_{\mathrm{s}}=540 \mathrm{~ms}, \mathrm{TI}_{\mathrm{i}}=640 \mathrm{~ms}, \Delta \mathrm{TI}=19 \%, \mathrm{TR}=6,000 \mathrm{~ms}\right.$ at 3 T , contrast amplification compared to TIs equal to 15 times). The gray-scale shows T_{1} values over a range from 780 ms (i.e., $540 / \mathrm{ln} 2 \mathrm{~ms}$) to 924 ms (i.e., $640 / \mathrm{ln} 2 \mathrm{~ms}$) with the dark low signal representing shorter normal T_{1} values of about 780 ms and higher signal representing abnormal T_{1} values up to a maximum of about 924 ms . Lesions with T_{1} values greater than the maximum in the mD "overshoot" (i.e., greater than about 924 ms) and appear mid-gray in their centers (where their T_{1} values are unreliable). The T_{1} maps of lesions that overshoot are surrounded by high signal boundaries. The T_{1} maps are only valid in the mD and are obtained using long TR IR images, as in this case. If TR is short, the T_{1} values may be too low and need to be corrected. dSIR, divided subtracted inversion recovery.

