Appendix 1

Search strategy for PubMed

("lymph nodes"[MeSH Terms] OR "lymph node"[Title/Abstract] OR "lymph node"[Title/Abstract] OR "nodes lymph"[Title/Abstract] OR ("lymphatic metastasis"[MeSH Terms] OR "lymphatic metastases"[Title/Abstract] OR "lymph node metastasis"[Title/Abstract] OR "lymph node metastases"[Title/Abstract] OR "metastasis lymph node"[Title/ Abstract])) AND (((("dual"[All Fields] AND ("energie"[All Fields] OR "energies"[All Fields] OR "energy"[All Fields])) OR (("dual"[All Fields] AND ("energie"[All Fields] OR "energies"[All Fields] OR "energy"[All Fields]) AND ("radionuclide imaging"[MeSH Terms] OR ("radionuclide"[All Fields] AND "imaging"[All Fields]) OR "radionuclide imaging"[All Fields] OR "scanning"[All Fields] OR "scan s"[All Fields] OR "scanned"[All Fields] OR "scannings"[All Fields] OR "scans"[All Fields])) AND ("projection"[MeSH Terms] OR "forecasting"[MeSH Terms]))) AND ("CT"[Title/Abstract] OR "computed tomograph*"[Title/Abstract] OR "tomography, x–ray computed"[MeSH Terms])) OR "dect"[Title/Abstract] OR "spectral ct"[Title/Abstract])

Search strategy for Cochrane

Search Name:	
Date Run: 01/10/2022 08:15:55	
Comment:	
ID Search Hits	
#1 MeSH descriptor: [Lymphatic Metastasis] explode all trees 1920	
#2 (Lymphatic Metastases):ti,ab,kw OR (Lymph Node Metastasis):ti,ab,kw OR (Lymph Node Metastases):ti,ab,kw OR	
(Metastasis, Lymph Node):ti,ab,kw (Word variations have been searched) 5609	
#3 #1or#2 6207	
#4 MeSH descriptor: [Lymph Nodes] explode all trees 907	
#5 (Lymph Node):ti,ab,kw OR (Node, Lymph):ti,ab,kw OR (Nodes, Lymph):ti,ab,kw (Word variations have been	
searched) 12965	
#6 #4or#5 12971	
#7 #3or#6 13707	
#8 MeSH descriptor: [Tomography, Emission-Computed] explode all trees2652	
#9 (ct):ti,ab,kw OR (computed tomograph):ti,ab,kw (Word variations have been searched) 81765	
#10 #8or#9 83800	
#11 (dual energy):ti,ab,kw (Word variations have been searched) 6153	
#12 #10and#11 828	
#13 (dect):ti,ab,kw OR (spectral ct):ti,ab,kw (Word variations have been searched) 295	
#14 #12or#13 1042	
#15 #7and#14 3	

Search strategy for Embase

Embase Session Results

No.	Query	Results
#19	#18 AND #10	235
#18	#14 OR #17	395,622
#17	#15 OR #16	282,888
#16	'lymph nodes':ab,ti OR 'node, lymph':ab,ti OR 'nodes, lymph':ab,ti	168,824
#15	'lymph node'/exp	208,033
#14	#11 OR #13	171,888
#13	'lymphatic metastasis':ab,ti OR 'lymphatic metastases':ab,ti OR 'lymph node metastases':ab,ti OR 'metastasis, lymph node':ab,ti	31,605
#11	'lymph node metastasis'/exp	165,753
#10	#4 OR #9	15,209
#9	#3 AND #8	14,377
#8	'dual energy'	59,399
#4	'dural energy computer assisted tomography' OR 'dect' OR 'spectral ct'	3,650
#3	#1 OR #2	1,834,338
#2	'ct' OR 'computer tomography\$'	1,022,897
#1	'computer assisted tomography'/exp	1,313,207

Appendix 2 Specific reasons	or exclusion at the full-text screeni	ing stage
repetition 2 opecific reasons	of eachdolon at the run teat serven	ing stuge

N	First author	Year	Title	Journal	Reasons for exclusion
1	Yang <i>et al.</i>	2022	Radiomics profiling identifies the value of CT features for the preoperative evaluation of lymph node metastasis in papillary thyroid carcinoma	Diagnostics	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
2	Xu <i>et al.</i>	2022	lodine maps from dual-energy CT to predict extrathyroidal extension and recurrence in papillary thyroid cancer based on a radiomics approach	American Journal of Neuroradiology	Wrong outcome: prediction of tumor recurrence
3	Hong <i>et al.</i>	2022	Value of dual-layer spectral detector CT in preoperative prediction of lymph node metastasis of gastric cancer	-	Non-English language literature
4	Li et al.	2021	Histological subtypes of solid-dominant invasive lung adenocarcinoma: differentiation using dual-energy spectral CT	Clinical Radiology	Wrong outcome: prediction of tumor recurrence
5	Zeng <i>et al.</i>	2021	Decoupling convolution network for characterizing the metastatic lymph nodes of breast cancer patients	Medical Physics	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
6	Zou <i>et al.</i>	2021	A new prediction model for lateral cervical lymph node metastasis in patients with papillary thyroid carcinoma: based on dual-energy CT		Unable to extract data: unable to obtain diagnostic indicators for individual parameters
7	Zhou <i>et al.</i>	2021	Radiomics from primary tumor on dual-energy CT derived iodine maps can predict cervical lymph node metastasis in papillary thyroid cancer	Academic Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
8	Wang <i>et al.</i>	2021	Dual energy CT image prediction on primary tumor of lung cancer for nodal metastasis using deep learning	•	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
9	Takumi <i>et al.</i>	2021	Usefulness of dual-layer spectral CT in follow-up examinations: diagnosing recurrent squamous cell carcinomas in the head and neck	Japanese Journal of Radiology	Wrong outcome: prediction of tumor recurrence
10	Martin <i>et al.</i>	2021	Prospective evaluation of the first integrated positron emission Tomography/dual-energy computed tomography system in patients with lung cancer	Journal of Thoracic Imaging	Wrong outcome: not a diagnostic accuracy study
11	Le et al.	2021	CT features predictive of nodal positivity at surgery in pancreatic cancer patients following neoadjuvant therapy in the setting of dual energy CT	Abdominal Radiology	Unable to extract data: no related parameters
12	Kupik <i>et al.</i>	2021	A comparison study of dual-energy spectral CT and 18F-FDG PET/CT in primary tumors and lymph nodes of lung cancer	Diagn Interv Radiol	Wrong outcome: not a diagnostic accuracy study
13	Cao <i>et al.</i>	2021	Development of a nomogram combining clinical risk factors and dual-energy spectral CT parameters for the preoperative prediction of lymph node metastasis in patients with colorectal cancer	Frontiers in Oncology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
14	Xu <i>et al.</i>	2021	Integrating CT image features and quantitative dual- energy CT parameters for diagnosing metastatic lymph nodes from papillary thyroid carcinoma	Chinese Journal of Radiology	Non-English language literature
15	An et al.	2021	Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma	European Journal of Nuclear Medicine and Molecular Imaging	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
16	Zhou et al.	2020	Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer	European Radiology	Unable to extract data: radiomics studies
17	Wang et al.	2020	Dual-energy CT in the differentiation of stage T1 nasopharyngeal carcinoma and lymphoid hyperplasia	European Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
18	Liu et al.	2020	A study of radiomics parameters from dual- energy computed tomography images for lymph node metastasis evaluation in colorectal mucinous adenocarcinoma	Medicine	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
19	Li et al.	2020	Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer	European Radiology	Unable to extract data: radiomics studies
20	Kim et al.	2020	Application of dual-energy spectral computed tomography to thoracic oncology imaging	Korean J Radiol	Nonoriginal article

Appendix 2 (continued)

Appendix	2	(continued)
----------	---	-------------

N First author	Year	Title	Journal	Reasons for exclusion
21 Yang et al.	2018	Dual-source CT iodine concentration and Overlay value in diagnosis of different degree gastric cancer and metastatic lymph nodes	Chinese Journal of Medical Imaging Technology	Non–English language literature
22 Seidler et al	. 2019	Dual-Energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy	Computational and Structural Biotechnology Journal	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
23 Forghani et al.	2019	Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning	European Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
24 Huang et al.	2019	Dual-energy CT iodine image for evaluation of cervical lymph node metastatic potential in papillary thyroid microcarcinoma	Chinese Journal of Radiology	Non–English language literature
25 Rizzo <i>et al.</i>	2019	Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT	European Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
26 Morgan et al.	2019	The role of dual-energy computed tomography in assessment of abdominal oncology and beyond	Radiol Clin North Am	Nonoriginal article
27 Li <i>et al.</i>	2019	Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer	European Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
28 Zheng <i>et al.</i>	2017	Dual energy CT in diagnosis of central cervical metastatic lymph nodes in patients with papillary thyroid cancer	Chinese Journal of Medical Imaging Technology	Non-English language literature
29 Hokamp et	<i>al.</i> 2018	Verbesserte Darstellung intraspinaler Lymphome mittels virtuell-monoenergetischen Rekonstruktionen der Dual-Energy-CT	Rofo	Non–English language literature
30 Yang et al.	2016	GSI quantitative parameters: Preoperative diagnosis of metastasis lymph nodes in lung cancer	Chinese Journal of Lung Cancer	Non-English language literature
31 Yang <i>et al.</i>	2016	Dual source CT dual-energy imaging technology in differential diagnosis of the metastatic and reactive hyperplastic lymph nodes in patients with colorectal cancer	Chinese Journal of Medical Imaging Technology	Non–English language literature
32 Yang et al.	2016	Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis	Scientific reports	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
33 Wang et al.	2015	Application of single-source dual-energy spectral CT in differentiating lymphoma and metastatic lymph nodes in the head and neck		Non-English language literature
34 Liang et al.	2015	A retrospective study of dual-energy CT for clinical detecting of metastatic cervical lymph nodes in laryngeal and hypopharyngeal squamous cell carcinoma	Acta Oto- Laryngologica a	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
35 Fu <i>et al.</i>	2015	Dua-energy virtual noncontrast imaging in diagnosis of cervical metastasis lymph nodes	Journal of Cancer Research and Therapeutics	Unable to extract data: Unable to obtain diagnostic indicators for individual parameters
36 Liu <i>et al.</i>	2014	MSCT in diagnosis of non-functioning cystic neuroendocrine tumors of pancreas	Chinese Journal of Interventional Imaging and Therapy	Non–English language literature
37 Baxa et al.	2014	Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response	European Radiology	Unable to extract data: unable to obtain diagnostic indicators for individual parameters
38 Pei <i>et al.</i>	2013	Evaluation of advanced gastric carcinoma with monoenergetic spectrum curve of dual-source dual- energy computed tomography	Chinese Medical Sciences Journal	Nonoriginal article
39 Wang et al.	2013	Dual-energy CT in differential diagnosis of lymphoma and metastatic lymph nodes	Chinese Journal of Medical Imaging Technology	Non-English language literature

CT, computed tomography; MSCT, multislice computed tomography

Appendix 3

	0		1				
Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zou <i>et al.</i> 2021	359	102	62	37	158	73.63%	71.94%
Zhuo <i>et al.</i> 2021	216	78	17	14	107	84.80%	86.30%
Sun <i>et al.</i> 2020	51	23	4	11	13	67.80%	76.40%
Zeng <i>et al.</i> 2019	156	36	29	16	75	68.60%	72.00%
Li <i>et al.</i> 2016	40	16	7	4	13	80%	65%
Kato <i>et al.</i> 2015	81	30	5	5	41	84.80%	88.60%

Table S1 Main findings of included studies for IC in the arterial phase

IC, iodine concentration.

Table S2 Main findings of the included studies for NIC in the arterial phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	76	17	16	107	82.60%	86.30%
Sun <i>et al.</i> 2020	51	32	9	2	8	94.10%	47.10%
Zeng <i>et al.</i> 2019	156	38	27	14	77	72.80%	73.90%
Yang <i>et al.</i> 2019	178	63	36	9	70	87.50%	66.00%
He et al. 2019	212	112	3	12	85	90.30%	96.60%
Zhang <i>et al.</i> 2018	337	41	104	35	157	54%	60.20%
Li <i>et al.</i> 2016	40	15	5	5	15	75%	75%
Liu <i>et al.</i> 2015	175	38	4	25	108	60.30%	96.40%
Liu <i>et al.</i> 2015	152	39	38	21	54	64.40%	58.30%
Kato <i>et al.</i> 2015	81	29	9	6	37	82.60%	81.00%

NIC, normalized iodine concentration.

Table S3 Main findings of the included studies for slope in the arterial phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	75	21	17	103	81.50%	83.10%
Qiu <i>et al.</i> 2021	150	67	23	17	43	80.30%	65.48%
Zeng et al. 2019	156	38	25	14	79	73.80%	75.60%
Yang <i>et al.</i> 2019	178	52	17	20	89	72.20%	84.00%
He et al. 2019	212	109	1	15	87	87.90%	98.80%
Zhang <i>et al.</i> 2018	337	46	78	30	183	60%	70.10%
Liu <i>et al.</i> 2015	175	33	7	30	105	52.40%	93.80%

Table S4 Main findings of the included studies for IC in the venous p	ohase
---	-------

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	74	27	18	97	80.40%	78.20%
Wu <i>et al.</i> 2021	206	44	19	36	107	55.00%	84.90%
Sun <i>et al.</i> 2020	51	27	3	7	14	79.40%	82.40%
Zeng <i>et al.</i> 2019	156	43	18	9	86	81.90%	82.40%
Li <i>et al.</i> 2019	99	61	2	9	27	87.10%	93.10%
Foust <i>et al.</i> 2018	29	11	4	2	12	84.60%	75%
Zhao <i>et al.</i> 2017	136	85	3	17	31	83.30%	91.20%
Kato <i>et al.</i> 2015	81	30	5	5	41	87.00%	88.60%

IC, iodine concentration.

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo et al. 2021	216	74	37	18	87	80.40%	70.20%
Wu et al. 2021	206	50	18	30	108	62.50%	85.70%
Sun <i>et al.</i> 2020	51	24	3	10	14	70.60%	82.40%
Zeng <i>et al.</i> 2019	156	44	17	8	87	83.90%	84.10%
Yang <i>et al.</i> 2019	178	60	29	12	77	83.30%	72.60%
Li <i>et al.</i> 2019	99	68	7	2	22	97.10%	75.90%
He <i>et al.</i> 2019	212	108	18	16	70	87.10%	79.50%
Zhang <i>et al.</i> 2018	337	55	75	21	186	73%	71.30%
Zhao e <i>t al.</i> 2017	136	98	8	4	26	96.10%	76.50%
Liu <i>et al.</i> 2015	175	38	15	25	97	60.30%	86.60%
Liu <i>et al.</i> 2015	152	45	28	15	64	75.50%	70.00%
Kato <i>et al.</i> 2015	81	31	6	4	40	89.10%	86.80%

NIC, normalized iodine concentration.

Table S6 Main findings of the included studies for slope in the venous phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	62	23	30	101	67.40%	81.50%
Wu et al. 2021	206	42	15	38	111	52.50%	88.10%
Qiu <i>et al.</i> 2021	150	47	12	37	54	56.06%	82.14%
Zeng <i>et al.</i> 2019	156	43	17	9	87	81.80%	84.10%
Yang <i>et al.</i> 2019	178	49	25	23	81	68.00%	76.40%
Li <i>et al.</i> 2019	99	64	4	6	25	91.40%	86.20%
He et al. 2019	212	102	4	22	84	82.30%	95.50%
Zhang <i>et al.</i> 2018	337	50	6	26	255	66%	97.70%
Foust <i>et al.</i> 2018	29	12	8	1	8	92.30%	50%
Zhao e <i>t al.</i> 2017	136	90	6	12	28	88.20%	82.40%
Liu <i>et al.</i> 2015	175	39	10	24	102	62.00%	91.10%

Table S7 Main findings of the included studies for IC in the arterial phase combined with NIC in the arterial phase

	0		1		1		
Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	87	47	5	77	95.10%	62.10%
Sun <i>et al.</i> 2020	51	34	11	0	6	98.70%	36.00%
Zeng et al. 2019	156	28	9	24	95	91.50%	53.20%
Li e <i>t al.</i> 2016	40	19	10	1	10	95.00%	48.80%
Kato <i>et al.</i> 2015	81	34	13	1	33	97.40%	71.80%

IC, iodine concentration; NIC, normalized iodine concentration.

Table S8 Main findings of the included studies for NIC in the arterial phase combined with slope in the arterial phase

Study IDTotalTrueZhuo et al. 2021216	positives False positives 89 3		gatives True nega 89	tives Sensitivity 96.80%	Specificity 71.70%
Zhuo <i>et al.</i> 2021 216		5 3	89	96.80%	71 70%
				00.0070	11.1070
Zeng <i>et al.</i> 2019 156	48 4	6 4	58	92.90%	55.90%
Yang et al. 2019 178	69 4	7 3	59	96.50%	55.40%
He et al. 2019 212	123 4	4 1	84	98.80%	95.40%
Zhang <i>et al.</i> 2018 337	62 15	51 14	¥ 110	81.60%	42.20%
Liu <i>et al.</i> 2015 175	51 1	1 12	2 101	81.10%	90.40%

NIC, normalized iodine concentration.

Table S9 Main findings of the included studies for NIC in the arterial phase combined with NIC in the venous phase

	0		1		1		
Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	89	49	3	75	96.60%	60.60%
Sun <i>et al.</i> 2020	51	33	10	1	7	98.30%	38.80%
Zeng et al. 2019	156	50	39	2	65	95.60%	62.10%
Yang et al. 2019	178	71	55	1	51	98.00%	47.90%
He <i>et al.</i> 2019	212	122	20	2	68	98.70%	76.80%
Zhang <i>et al.</i> 2018	337	67	149	9	112	87.60%	42.90%
Liu <i>et al.</i> 2015	152	55	54	5	38	91.30%	40.80%
Liu <i>et al.</i> 2015	175	53	18	10	94	84.20%	83.50%
Kato <i>et al.</i> 2015	81	34	14	1	32	98.10%	70.30%

NIC, normalized iodine concentration.

Table S10 Main findings of the included studies for NIC in the arterial phase combined with slope in the venous phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	87	37	5	87	94.30%	70.30%
Zeng et al. 2019	156	49	39	3	65	95.00%	62.10%
Yang et al. 2019	178	69	53	3	53	96.00%	50.40%
He <i>et al.</i> 2019	212	122	7	2	81	98.30%	92.30%
Zhang <i>et al.</i> 2018	337	64	108	12	153	84.40%	58.80%
Liu <i>et al.</i> 2015	175	53	14	10	98	84.90%	87.70%

NIC, normalized iodine concentration.

Table S11 Main findings of the included studies for slope in the arterial phase combined with NIC in the venous phase.

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	89	52	3	72	96.40%	58.30%
Zeng et al. 2019	156	50	38	2	66	95.80%	63.60%
Yang <i>et al.</i> 2019	178	69	41	3	65	95.40%	61.00%
He <i>et al.</i> 2019	212	122	19	2	69	98.40%	78.50%
Zhang et al. 2018	337	68	130	8	131	89.20%	50.00%
Liu <i>et al.</i> 2015	175	51	21	12	91	81.10%	81.20%

NIC, normalized iodine concentration.

Table S12 Main findings of the included studies for slope in the arterial phase combined with slope in the venous phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	86	40	6	84	94.00%	67.70%
Qiu <i>et al.</i> 2021	150	77	31	7	35	91.30%	53.40%
Zeng <i>et al.</i> 2019	156	50	38	2	66	95.20%	63.40%
Yang <i>et al.</i> 2019	178	66	38	6	68	91.10%	64.20%
He <i>et al.</i> 2019	212	121	5	3	83	97.80%	94.30%
Zhang <i>et al.</i> 2018	337	66	82	10	179	86.40%	68.50%
Liu <i>et al.</i> 2015	175	52	16	11	96	81.90%	85.50%

Table S13 Main findings of the included studies for IC in the venous phase combined with NIC in the venous phase.

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	89	56	3	68	96.20%	54.90%
Wu <i>et al.</i> 2021	206	66	34	14	92	83.10%	72.80%
Sun <i>et al.</i> 2020	51	32	5	2	12	93.90%	67.90%
Zeng <i>et al.</i> 2019	156	50	32	2	72	97.00%	69.30%
Li <i>et al.</i> 2019	99	70	8	0	21	99.60%	70.70%
Zhao <i>et al.</i> 2017	136	101	10	1	24	99.30%	69.80%
Kato <i>et al.</i> 2015	81	35	11	0	35	98.60%	76.90%

IC, iodine concentration; NIC, normalized iodine concentration.

Table S14 Main findings of the included studies for IC in the venous phase combined with slope in the venous phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	86	45	6	79	93.60%	63.70%
Wu <i>et al.</i> 2021	206	63	32	17	94	78.60%	74.80%
Zeng <i>et al.</i> 2019	156	50	32	2	72	96.70%	69.30%
Li <i>et al.</i> 2019	99	69	6	1	23	98.90%	80.20%
Foust <i>et al.</i> 2018	29	13	10	0	6	98.80%	35.00%
Zhao <i>et al.</i> 2017	136	100	8	2	26	98.00%	75.10%

IC, iodine concentration.

Table S15 Main findings of the included studies for NIC in the venous phase combined with slope in the venous phase

Study ID	Total	True positives	False positives	False negatives	True negatives	Sensitivity	Specificity
Zhuo <i>et al.</i> 2021	216	86	53	6	71	93.60%	57.00%
Wu et al. 2021	206	66	29	14	97	82.20%	77.10%
Zeng <i>et al.</i> 2019	156	50	30	2	74	97.00%	70.70%
Yang <i>et al.</i> 2019	178	68	47	4	59	94.70%	55.50%
Li <i>et al.</i> 2019	99	70	10	0	19	99.80%	65.40%
He <i>et al.</i> 2019	212	121	21	3	67	97.70%	75.90%
Zhang <i>et al.</i> 2018	337	69	79	7	182	90.80%	69.70%
Zhao et al.2017	136	101	13	1	21	99.50%	63.00%
Liu <i>et al.</i> 2015	175	53	24	10	88	84.90%	78.80%

NIC, normalized iodine concentration.