Appendix 1

Algorithm 1 Higher-order singular value decomposition (HOSVD) for Pt-LRT reconstruction

INPUT: fourth-order tensor $\Gamma \in C^{N_1 \times N_2 \times N_3 \times N_4}$ with dimensions (N₁,N₂,N₃,N₄) and the regularization parameter $\lambda = [\lambda_1, \lambda_2, \lambda_3, \lambda_4]$

ALGORITHM:

Unfold the tensor along its single modes:

 $T_{(1)}$: reshapes Γ into an $N_1 \times (N_2 \times N_3 \times N_4)$ complex matrix.

 $T_{(2)}$: reshapes Γ into an $N_2 \times (N_1 \times N_3 \times N_4)$ complex matrix.

 $T_{(3)}$: reshapes Γ into an $N_3 \times (N_1 \times N_2 \times N_4)$ complex matrix.

 $T_{(4)}$: reshapes Γ into an $N_4 \times (N_1 \times N_2 \times N_3)$ complex matrix.

(2) Compute the complex SVD of T₍₁₎ (n = 1, 2, 3, 4) and obtain the orthogonal matrices U₍₁₎, U₍₂₎, U₍₃₎ and U₍₄₎ from the n-mode signal subspace,

(3) Compute the complex core tensor \mathcal{G} related by

 $\boldsymbol{\mathcal{G}} = \boldsymbol{\Gamma} \times_{1} \mathbf{U}_{(1)}^{H} \times_{2} \mathbf{U}_{(2)}^{H} \times_{3} \mathbf{U}_{(3)}^{H} \times_{4} \mathbf{U}_{(4)}^{H}$ which is equivalent to its unfolding forms:

 $G_{(n)} = \mathbf{U}_{(n)}^{H} \mathbf{T}_{(n)} \left[\mathbf{U}_{(i)} \otimes \mathbf{U}_{(j)} \right]$, with $1 \le n \le 4$ and $\boldsymbol{i} \ne j \ne n$

where \otimes represents the Kronecker product.

(4) Compute the high-order singular value truncation (soft thresholding on $G_{(n)}$:

 $ST(p)_{G_{(n)}} = \frac{p}{|p|} \max\left(0, |p| - \lambda_n\right)$

where p is an element of the $G_{(n)}$.

(5) Construct back the filtered tensor with the n-mode (n = 1, 2, 3, 4) unfolding matrix , calculated as follows:

 $\mathbf{T}_{(n)}^{denoise} = \mathbf{U}_{(n)} \boldsymbol{\mathcal{G}}[\boldsymbol{U}_{(i)} \otimes \boldsymbol{U}_{(j)}]^{H}$ with $1 \le n \le 4$ and $i \ne j \ne n$

OUTPUT: The denoised tensor is obtained by folding.