Supplementary

Appendix 1

For calculation of the curvature of the central luminal line (CLL) of the carotid artery, the following equation of the extrinsic linear curvature was used (18):

$$
\begin{equation*}
\mathrm{\kappa}=\frac{\sqrt{\left(z^{\prime \prime} y^{\prime}-y^{\prime \prime} z^{\prime}\right)^{2}+\left(x z^{\prime \prime} \prime^{\prime}-z^{\prime \prime} x^{\prime}\right)^{2}+\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)^{2}}}{\left(x^{\prime} 2+y^{\prime} 2+z^{\prime} 2\right)^{(32)}} \tag{1}
\end{equation*}
$$

To calculate torsion of the CLL, the following equation
derived from the theory described by Pressley (19) was used:

$$
\begin{equation*}
\tau=\frac{\left(x^{\prime \prime \prime}\left(y z^{\prime \prime}-y^{\prime \prime} z^{\prime}\right)+y^{\prime \prime \prime}\left(x^{\prime \prime} z^{\prime}-x^{\prime} z^{\prime \prime}\right)+z^{\prime \prime \prime}\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y z^{\prime}\right)\right)}{} \tag{2}
\end{equation*}
$$

Where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the CLL cartesian coordinates, ' is the first derivative, " is the second derivative and " $"$ is the third derivative.

Figure S1 Bland-Altman plots showing agreement of two operators on tortuosity index (TI) measurements of 175 carotids according to the three subfields [internal carotid artery (ICA), common carotid artery (CCA), total carotid artery (CA)]. The dash-dotted line in the middle represents the mean difference of the TI between the two operators, and the dotted lines represent the upper and lower limits of agreement (mean difference $\pm 1.96 \times$ standard deviation).

Figure S2 Bland-Altman $(18,19)$ plots showing intra-operator agreement of operator 1 (blinded) in the left panel, and operator 2 on the right on tortuosity index (TI) measurements of 35 carotids according to the three subfields [internal carotid artery (ICA), common carotid artery (CCA), total carotid artery (CA)]. The dash-dotted line in the middle represents the mean difference of the TI between the two operators, and the dotted lines represent the upper and lower limits of agreement (mean difference $\pm 1.96 \times$ standard deviation).

Table S1 Intraclass correlation coefficients for both inter- and intra-operator reliability $(18,19)$

	Inter-operator ($\mathrm{n}=175$)		Intra-operator ($\mathrm{n}=35$)			
			Operator ${ }^{\text {* }}$		Operator 2	
	ICC	(95\% CI)	ICC	(95\% CI)	ICC	(95\% CI)
ICA	0.983	(0.977-0.988)	0.998	(0.997-0.999)	0.982	(0.965-0.991)
CCA	0.921	(0.849-0.959)	0.978	(0.956-0.994)	0.921	(0.849-0.959)
Total CA	0.980	(0.973-0.985)	0.996	(0.993-0.998)	0.980	(0.962-0.990)

*, indicates blinded operator. ICC model: two-way mixed, type: absolute agreement. ICC, intraclass correlation coefficient; CI, confidence interval; ICA, internal carotid artery; CCA, common carotid artery; CA, carotid artery.

