Supplementary

Appendix 1

Radiomic features

- (I) Shape features (2D): in this group of features we included descriptors of the two-dimensional size and shape of the region of interest (ROI).
- (II) First-order statistics: first-order statistics describe the distribution of voxel intensities within the image region defined by the mask through commonly used and basic metrics.
- (III) Textural features: textural features describe the spatial distribution of voxel intensities and are calculated from five typical matrices—the gray level co-occurrence matrix (GLCM), the gray-level run-length matrix (GLRLM), the gray-level size zone matrix (GLSZM), the gray-level dependence matrix (GLDM), and the neighborhood gray-tone difference matrix (NGTDM).
- (IV) Wavelet-based features: wavelet-based features were derived from wavelet decompositions of the original ultrasound (US) images using the "Coiflet 1" wavelet function. Each image was filtered using either a high band-pass filter (H) or low-band pass filter (L) in x and y directions, yielding 4 different combinations of decompositions. The wavelet decompositions of the original image X were labeled as XLL, XLH, XHL, XHH.
- The feature algorithms can also be found online (https://pyradiomics.readthedocs.io/en/latest/features.html).

Figure S1 Histograms of ICCs used to assess the intra-observer and inter-observer reproducibility of intratumoral (A,D), peritumoral (B,E) and parenchymal (C,F) radiomic features. ICCs, intraclass correlation coefficients.

Figure S2 Frequency of radiomic feature selection in intratumoral (A), peritumoral (B), and parenchymal (C) regions.

Figure S3 Importance of radiomic features of the In&Peri&P model in the random forest classifier process. In&Peri&P = intratumoral & peritumoral & parenchymal model.

 Table S1 Ultrasound acquisition parameters of institutions

Institution	Manufacturer	Machine	Probe
1	Mindray	Resona 7	3–11 linear array probe
	Mindray	DC-8	3–12 linear array probe
	Philips	EPIQ 7	5–12 linear array probe
	Philips	iU Elite	3–9 linear array probe
	Siemens	Sequoia	6–18 linear array probe
	SuperSonic	Aixplorer	4–15 linear array probe
	TOSHIBA	Aplio 500	5–14 linear array probe
2	GE	LOGIQ E9	6–15 linear array probe
	Siemens	S3000	6–18 linear array probe
	SuperSonic	Aixplorer	4–15 linear array probe
	TOSHIBA	Aplio 500	5–14 linear array probe

Table S2 R packages used in this study

Functions	R package
AUC and Delong test	pROC
Bar diagrams, box diagrams, ROC curves, and waterfall plots	ggplot2, ROCR
Intra/interclass correlation	irr
Calibration curves	rms
Hosmer-Lemeshow test	ResourceSelection
Index IDI	PredictABEL
Random forest	randomForest
Spearman's rank correlation	cor
Recursive feature elimination	caret
Boruta	Boruta
Proportions comparison	epiR, STAT

AUC, area under the ROC curve; IDI, integrated discrimination improvement; ROC, receiver operator characteristic.

Table S3 Selected radiomic features of models

Model	Selected features
Intratumoral	wavelet.HL_glrIm_RunLengthNonUniformity, wavelet.LH_ngtdm_Busyness, shape2D_Sphericity, wavelet.LL_glcm_ldmn, wavelet.HH_glcm_Imc2, wavelet.HH_firstorder_Maximum, wavelet.HL_ngtdm_Busyness, wavelet.HL_glszm_ZoneEntropy, wavelet.HL_glcm_InverseVariance, wavelet.LH_glcm_Imc1
Peritumoral	wavelet.LH_glrIm_RunLengthNonUniformity, wavelet.LL_ngtdm_Busyness, wavelet.LL_firstorder_Range, ngtdm_Strength, wavelet.HL_gldm_DependenceEntropy, wavelet.LL_glcm_Idn, wavelet.HH_ngtdm_Busyness, wavelet.LH_ngtdm_Contrast, wavelet.LL_gldm_DependenceEntropy
Parenchymal	wavelet.LH_firstorder_Skewness, firstorder_Skewness, firstorder_Minimum, wavelet.LL_ngtdm_Strength, wavelet.HL_ firstorder_RootMeanSquared
In&Peri	Intratumoral features: wavelet.HL_glrlm_RunLengthNonUniformity, wavelet.LH_ngtdm_Busyness, shape2D_Sphericity, wavelet.LL_glcm_ldmn, wavelet.HH_glcm_Imc2, wavelet.HH_firstorder_Maximum, wavelet.HL_ngtdm_Busyness, wavelet. HL_glszm_ZoneEntropy, wavelet.HL_glcm_InverseVariance, wavelet.LH_glcm_Imc1
	Peritumoral features: wavelet.LH_glrlm_RunLengthNonUniformity, wavelet.LL_ngtdm_Busyness, wavelet.LL_firstorder_ Range, ngtdm_Strength, wavelet.HL_gldm_DependenceEntropy, wavelet.LL_glcm_Idn, wavelet.HH_ngtdm_Busyness, wavelet.LH_ngtdm_Contrast, wavelet.LL_gldm_DependenceEntropy
In&P	Intratumoral features: wavelet.HL_glrlm_RunLengthNonUniformity, wavelet.LH_ngtdm_Busyness, shape2D_Sphericity, wavelet.LL_glcm_Idmn, wavelet.HH_glcm_Imc2, wavelet.HH_firstorder_Maximum, wavelet.HL_ngtdm_Busyness, wavelet. HL_glszm_ZoneEntropy, wavelet.HL_glcm_InverseVariance, wavelet.LH_glcm_Imc1
	Parenchymal features: wavelet.LH_firstorder_Skewness, firstorder_Skewness, firstorder_Minimum, wavelet.LL_ngtdm_ Strength
In&Peri&P	Intratumoral features: wavelet.HL_glrlm_RunLengthNonUniformity, wavelet.LH_ngtdm_Busyness, shape2D_Sphericity, wavelet.LL_glcm_ldmn, wavelet.HH_glcm_Imc2, wavelet.HH_firstorder_Maximum, wavelet.HL_ngtdm_Busyness, wavelet. HL_glszm_ZoneEntropy, wavelet.HL_glcm_InverseVariance, wavelet.LH_glcm_Imc1
	Peritumoral features: wavelet.LH_glrlm_RunLengthNonUniformity, wavelet.LL_ngtdm_Busyness, wavelet.LL_firstorder_ Range, ngtdm_Strength, wavelet.HL_gldm_DependenceEntropy, wavelet.LL_glcm_Idn, wavelet.HH_ngtdm_Busyness, wavelet.LH_ngtdm_Contrast, wavelet.LL_gldm_DependenceEntropy
	Parenchymal features: wavelet.LH_firstorder_Skewness, firstorder_Skewness, firstorder_Minimum, wavelet.LL_ngtdm_ Strength

In&Peri: intratumoral & peritumoral model; In&P = intratumoral & parenchymal model; In&Peri&P = intratumoral & peritumoral & parenchymal model.

Table S4 Performance o	of radiomic models in	n the differentiation	of malignant from	n benign breast	lesions using the	training cohort
		i une unierentitution	OI IIIIIIEIIUIICIIOII		icolono donie div	CIUTITIE CONOIC

There is a restriction of the second of the second se							
Model	Sen (%)	Spe (%)	Acc (%)	AUC			
Intratumoral	77 [70–83]	82 [75–88]	79 [75–84]	0.855 [0.813–0.896]			
Peritumoral	74 [67–80]	86 [79–91]	79 [75–84]	0.858 [0.819–0.898]			
Parenchymal	75 [68–81]	56 [47–64]	66 [61–71]	0.689 [0.633–0.746]			
In&Peri	76 [69–82]	88 [81–92]	81 [77–85]	0.884 [0.848–0.919]			
In&P	85 [80–90]	70 [62–77]	78 [74–83]	0.867 [0.829–0.906]			
In&Peri&P	85 [79–90]	83 [76–89]	84 [80–88]	0.921 [0.895–0.948]			

Data in parentheses are 95% confidence intervals. In&Peri = intratumoral & peritumoral model; In&P = intratumoral & parenchymal model; In&Peri&P = intratumoral & peritumoral & parenchymal model. Acc, accuracy; AUC, area under the receiver operator characteristic curve; Sen, sensitivity; Spe, specificity.

Table S5 Calibration of radiomic models evaluated by the Hosmer-Lemeshow test

Cabart			Hosmer-Lemeshow P	value		
Conort	Intratumoral	Peritumoral	Parenchymal	In&Peri	In&P	In&Peri&P
Training cohort	0.641	0.016	0.996	0.994	0.037	0.070
Internal test cohort	0.087	0.544	0.085	0.282	0.065	0.175
External test cohort	0.407	0.437	0.002	0.149	0.074	0.069

In&Peri = intratumoral & peritumoral model; In&P = intratumoral & parenchymal model; In&Peri&P = intratumoral & peritumoral & parenchymal model.

Table S6 Univariate and multivariate analyses for the Rad-score and clinical factors in the differentiation of malignant from benign breast lesions

Characteristics	Univariate analysis		Multivariate analysis		
Characteristics	OR (95% CI)	P value	OR (95% CI)	P value	
Training cohort (n=339)					
Age (years)	1.10 (1.07–1.13)	<0.001	1.08 (1.04–1.13)	<0.001	
Lesion size (mm)	1.06 (1.04–1.08)	<0.001	0.99 (0.95–1.02)	0.394	
Tumor location (outer quadrant/subareolar)	2.24 (1.42–3.57)	<0.001	0.82 (0.34–1.93)	0.654	
Distance from the nipple (mm)	1 (0.99–1.01)	0.985	1.00 (0.97–1.02)	0.698	
BI-RADS category	5.33 (3.82–7.79)	<0.001	3.25 (2.14–5.28)	<0.001	
Rad-score	3,384.39 (803.31–17,347.60)	<0.001	1,762.40 (283.57–14,383.87)	<0.001	
Internal test cohort (n=146)					
Age (years)	1.10 (1.06–1.14)	<0.001	1.13 (1.06–1.22)	0.001	
Lesion size (mm)	1.05 (1.02–1.08)	0.002	1.00 (0.94–1.06)	0.993	
Tumor location (outer quadrant/subareolar)	1.11 (0.55–2.26)	0.770	0.64 (0.14–2.63)	0.541	
Distance from the nipple (mm)	0.98 (0.96–1.00)	0.036	0.98 (0.94–1.01)	0.233	
BI-RADS category	3.85 (2.56–6.31)	<0.001	2.20 (1.27-4.09)	0.007	
Rad-score	2,760.87 (1,719.16–9,139.61)	<0.001	1,863.07 (708.16–14,439.58)	< 0.001	
External test cohort (n=106)					
Age (years)	1.10 (1.07–1.13)	<0.001	1.08 (1.04–1.13)	<0.001	
Lesion size (mm)	1.06 (1.04–1.08)	<0.001	0.99 (0.95–1.02)	0.392	
Tumor location (outer quadrant/subareolar)	2.24 (1.42–3.57)	<0.001	0.82 (0.34–1.93)	0.657	
Distance from the nipple (mm)	1.00 (0.99–1.01)	0.985	1.00 (0.97–1.02)	0.695	
BI-RADS category	5.33 (3.82–7.79)	<0.001	3.25 (2.14–5.28)	<0.001	
Rad-score	2,755.22 (478.98–22,964.10)	<0.001	1,792.02 (287.39–14,688.18)	<0.001	

BI-RADS, Breast Imaging Reporting and Data System; CI, confidence interval; OR, odds ratio; Rad-score, radiomic signature score.

Table S7 Diagnostic performance of the Rad-BI-RADS category in the differentiation of malignant from benign breast lesions using the internal and external test cohorts

Madal	Internal test cohort (n=146)			External test cohort (n=106)			
Model –	Acc (%)	Sen (%)	Spe (%)	Acc (%)	Sen (%)	Spe (%)	
BI-RADS	73 [65–80]	96 [89–99]	39 [27–51]	76 [67–84]	97 [90–100]	46 [29–63]	
Rad-score	82 [75–88]*	82 [72–90]*	82 [71–90]*	80 [71–87]	84 [73–92]*	73 [56–86]*	
Rad-BI-RADS category	83 [76–89] [#]	93 [86–99]	71 [58–81] [#]	86 [78–92]*	90 [80–97]	75 [59–85]*	

Data in parentheses are 95% confidence intervals. *, significantly different from the BI-RADS category and Rad-score; [#], significantly different from the BI-RADS category and Rad-BI-RADS category. Acc, accuracy; BI-RADS, Breast Imaging Reporting and Data System; Rad-score, radiomic signature score; Sen, sensitivity; Spe, specificity.