Appendix 1

The following steps were taken to obtain the ultrasound (US) images: the patient was placed in a supine position, raising the neck and back to fully expose the neck. Routine transverse and longitudinal scanning of the thyroid isthmus and left and right lobes was performed. Based on the characteristics of the high-frequency US images, we selected the clearest longitudinal section of the lesion, placed the probe on the patient's neck, and marked the lesion perpendicular to the probe, making the interface between the thyroid capsule and the sound beam perpendicular, increasing sound energy reflection, and ensuring the clear display of the US images. The longitudinal dimension, transverse dimension, morphology, internal echo, boundary, presence or absence of calcification, aspect ratio, and blood flow signal of each nodule were recorded. The US images were retrieved from the thyroid imaging database.

Appendix 2

Deep-learning (DL) procedure

Because of leak of image data, to better carry out the generalization, we carefully set the learning rate. We adapted the cosine decay learning rate algorithm in this study. Our learning rate is expressed as follows:

$$\eta_t = \eta_{\min}^i + \frac{1}{2} \left(\eta_{\max}^i - \eta_{\min}^i \right) \left[1 + \cos\left(\frac{T_{cur}}{T_i} \pi\right) \right]$$
[1]

where $\eta_{\min}^{i} = 0$, $\eta_{\max}^{i} = 0.01$, and $T_{i} = 50$ represent the minimum learning rate, the maximum learning rate, and the number of iteration epochs, respectively. As the backbone part adopts pre-training parameters, to ensure the migration effect, on $T_{cur} = \frac{1}{2}T_{i}$, fine tune the parameters of the backbone part. Therefore, the learning rate of backbone part is expressed as follows:

$$\eta_t^{backbone} = \begin{cases} 0 & \text{if } T_{cur} > \frac{1}{2}T_i \\ \eta_{\min}^i + \frac{1}{2} \left(\eta_{\max}^i - \eta_{\min}^i\right) \left[1 + \cos\left(\frac{T_{cur}}{T_i}\pi\right)\right] & \text{if } T_{cur} > \frac{1}{2}T_i \end{cases}$$

$$[2]$$

The other hyperparameter configurations are as follows: optimizer: Stochastic Gradient Descent (SGD), loss function: sigmoid cross entropy.

In the process of building deep-learning radiomics

model, we combined the finally selected radiomics features with the result of the deep-learning model to form a new feature set, which is then input into a machine learning algorithm.

Table S1	Pathological	classification	of 1076	thyroid not	dules
----------	--------------	----------------	---------	-------------	-------

Pathological classification	Development set (n=719)	Validation set 1 (n=74)	Validation set 2 (n=283)	
Benign nodule	411	8	175	
Nodular goiter (%)	376 (91.5)	6 (75.0)	146 (83.4)	
Adenoma (%)	18 (4.4)	0	8 (4.6)	
Chronic lymphocytic thyroiditis (%)	12 (2.9)	2 (25.0)	20 (11.4)	
subacute thyroiditis (%)	5 (1.2)	0	1 (0.6)	
Malignant nodule	308	66	108	
Papillary thyroid carcinoma (%)	306 (99.4)	65 (98.5)	107 (99.1)	
Medullary thyroid carcinoma (%)	2 (0.6)	1 (1.5)	1 (0.9)	

Age₋	1.000	0.213	0.177	-0.219	0.169	-0.122	-0.167	-0.170	-0.339
Transverse dimension [−]	0.213	1.000	0.926	-0.442	0.519	-0.116	-0.363	-0.450	-0.509
Longitudinal _ dimension	0.177	0.926	1.000	-0.406	0.476	-0.079	-0.292	-0.230	-0.400
Composition-	-0.219	-0.442	-0.406	1.000	-0.664	0.215	0.340	0.279	0.511
Echogenicity_	0.169	0.519	0.476	-0.664	1.000	-0.231	-0.393	-0.318	-0.572
Echogenic _ foci	-0.122	-0.116	-0.079	0.215	-0.231	1.000	0.239	0.129	0.370
Margin -	-0.167	-0.363	-0.292	0.340	-0.393	0.239	1.000	0.334	0.510
Orientation-	-0.170	-0.450	-0.230	0.279	-0.318	0.129	0.334	1.000	0.395
Label-	-0.339	-0.509	-0.400	0.511	-0.572	0.370	0.510	0.395	1.000
Age Transverse Longitudinal Composition Echogenicity Echogenic Margin Orientation Label dimension dimension								Label	

Figure S1 Clinical feature correlation coefficient heatmap. The closer the correlation coefficient was to 1 or -1, the stronger the correlation; The closer it was to 0, the weaker the correlation.

Table S2 Logistic regression analysis of single and multiple factors

Veriables	Univariate analysis			Multivariate analysis				
vanables	OR	LCI	UCI	P value	OR	LCI	UCI	P value
Gender	0.922	0.856	0.993	0.073	-	-	-	-
Age	0.984	0.981	0.986	<0.001	0.992	0.99	0.994	<0.001
Transverse dimension	0.985	0.983	0.986	<0.001	0.994	0.99	0.999	0.035
Longitudinal dimension	0.982	0.98	0.984	<0.001	0.999	0.994	1.004	0.752
Orientation	1.689	1.571	1.815	<0.001	1.158	1.085	1.235	<0.001
Composition	1.328	1.29	1.368	<0.001	1.056	1.023	1.09	0.004
Echogenicity	0.819	0.806	0.833	<0.001	0.915	0.897	0.933	<0.001
Echogenic foci	1.271	1.214	1.331	<0.001	1.124	1.087	1.163	<0.001
Margin	1.195	1.169	1.223	<0.001	1.057	1.037	1.078	<0.001

OR, odds ratio; LCI, low-confidence interval; UCI, upper-confidence interval.

Table S3 The 45 radiomics features	Table S3 (continued)				
Selected features	wavelet_HHL_firstorder_Kurtosis				
exponential_glcm_Correlation	wavelet_HHL_glcm_Idn				
exponential_glrIm_ShortRunLowGrayLevelEmphasis	wavelet_HLH_firstorder_Mean				
exponential_glszm_SmallAreaHighGrayLevelEmphasis	wavelet_HLH_gldm_LargeDependenceHighGrayLevelEmphasis				
exponential_ngtdm_Coarseness	wavelet_HLH_glrlm_RunLengthNonUniformityNormalized				
gradient_glszm_LowGrayLevelZoneEmphasis	wavelet HLH glrlm ShortRunHighGrayLevelEmphasis				
gradient_ngtdm_Busyness	wavelet HLH glszm LowGrayLevelZoneEmphasis				
lbp_3D_k_firstorder_10Percentile	wavelet HLH glszm SizeZoneNonUniformity				
lbp_3D_k_glcm_lmc1	wavelet HLH glszm SmallAreaEmphasis				
lbp_3D_k_glszm_SizeZoneNonUniformity	wavelet HLH glszm SmallAreaHighGravLevelEmphasis				
lbp_3D_k_glszm_SmallAreaEmphasis	wavelet HLL firstorder Median				
lbp_3D_m1_ngtdm_Busyness	wavelet HLL glcm Idn				
lbp_3D_m2_glcm_Correlation	wavelet LHH firstorder Maximum				
lbp_3D_m2_glszm_GrayLevelVariance	wavelet LHH gldm DependenceEntropy				
logarithm_glcm_DifferenceEntropy	wavelet LHH oldm SmallDependenceHighGravLevelEmphasis				
original_shape_Elongation	wavelet LHH glszm SizeZoneNonUniformitvNormalized				
square_glcm_JointAverage	wavelet LHL firstorder Mean				
square_glszm_LargeAreaLowGrayLevelEmphasis	wavelet LHL firstorder Median				
square_ngtdm_Coarseness	wavelet LLH notdm Contrast				
squareroot_firstorder_InterquartileRange	wavelet LLL oldm LargeDependenceLowGravLevelEmphasis				
squareroot_glszm_SmallAreaEmphasis	wavelet LLL glszm SizeZoneNonUniformity				
squareroot_glszm_SmallAreaLowGrayLevelEmphasis	wavelet LLL glszm SmallAreaHighGravLevelEmphasis				
wavelet_HHH_glrlm_GrayLevelVariance	wavelet LLL_ngtdm_Coarseness				

Table S3 (continued)

Figure S2 Delong test. The Delong test showed a statistically significant difference in the efficacy of the junior and senior physicians in diagnosing thyroid nodules before and after deep-learning radiomics assistance. However, there was no statistically significant difference in the diagnostic efficacy of the experts in diagnosing thyroid nodules. DLR, deep-learning radiomics.

Figure S3 The calibration curve and DCA. (A) The calibration curve showed good calibration; (B) The DCA results showed that the models in which the junior physicians, senior physicians, and experts received deep-learning radiomics assistance had the best clinical utility. DLR, deep-learning radiomics; DCA, decision curve analysis.