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Supplementary

Appendix 1 Supplemental methods

Our developed framework is based on open-source software, Paraview v.5.9.0 (46) for pre-processing and visualization, 
complimented by in-house Python modules based on Simple ITK v.2.0.2 (47,48) for segmentation and quantification of the 
regions of interest (Figure S1; Table S2).

Image pre-processing

Initially, the volumetric CT images, with acquisition parameters detailed in Table S1, were loaded into Paraview and the 
opacity transfer function in the volumetric view was adjusted to highlight soft tissue in the thoracic CT scan, such as vessels 
and organs (Figure 1A). With the aorta clearly visible, the image was then cropped to have a field of view focused on the aortic 
root, including the interface between the aortic valve and the left ventricular outflow tract (LVOT), a part of the ascending 
aorta after the sino-tubular junction (STJ) and excluding any other surrounding structures (Figure 1A). The field of view is 
then resampled to have isotropic voxel dimensions of [0.5, 0.5, 0.5 mm].

Valve segmentation

To segment the valve from surrounding tissue, the fast-marching method was employed. This method is closely related to 
level-set segmentation which is based on solving a partial differential equation (PDE) named the Eikonal equation Eq. [1] (49)

u C∇ =                                                                                                                                                                                       [1]

Where u C∇ = describes the evolution of a closed surface as a function of time and u C∇ =  represents the cost image which is 
modeled as the speed of the propagating surface. Fast marching has been shown to segment anatomical regions of complex 
topology and varied curvature (49). The segmentation process is controlled by seed points where it propagates outward from 
the local surface normal of the seed points (49). The propagation is controlled by the design of what is known as the speed 
image or function, which aims to incorporate image features such that high values are present near boundaries and lower 
values in homogenous regions (49). For our purposes, we first derived a smoothed gradient magnitude image using a gradient 
magnitude recursive gaussian operation (50) with a smoothing sigma of 0.5. The final speed image was then calculated using 
a bounded reciprocal operation (50) which produces a new image with values of zero near the boundaries or edges, and values 
of one in homogeneous regions. The determination of the cost function can be defined as in Eq. [2]
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. The centroid of the previously 
annotated field of view (Figure 2A) was used as initial seed point, along with the constructed speed image as inputs into a fast-
marching procedure (50). The output of which is a time-crossing map, which indicates the time of arrival of the propagated 
level-set front. This arrival time effectively becomes the number of iterations required segment a particular structure. We 
therefore set a threshold for this output to a fixed time/level using a binary threshold (50) of 400 iterations, which, we deemed 
an appropriate value for segmenting the aortic root shape without the calcification in the leaflets. An important implication 
of how the cost function was designed, is that the segmentation propagates through luminal non-calcified segments that are 
smoother in the speed image and stop at calcified “sharp” edges in the gradient function.

Finally, to correct for noise and holes in the segmentation and obtain a smoothed surface, we initially used a morphological 
closing operation (50) with a kernel radius of 2 voxels, and then a smoothing recursive gaussian operation (50) with a kernel 
radius of 2 voxels. For visualizing the binary volume as a transparent surface, we used the contour filter (51) in Paraview on 
the final filter output shown in Figure 1B. The details of the processing pipeline are shown in a flowchart in Figure S1 and the 
detailed parameterization for the various filters is presented in Table S2.
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Principal axes determination and landmark points

Once, the smoothed aortic root model is constructed, we proceed to analyze the shape features of the binary segmentation. 
This is done through shape statistics algorithm (52), which allows us to automatically estimate the orientation axes, the center 

Figure S1 Flowchart diagram of the computational framework developed for assessment of calcification. The flowchart describes a series of 
operations, either manual or automatic that operate on an initial input set of CT images, to eventually generate tabulated files with relevant 
clinical indices such as volume scores and display 3D models of detected valve and calcification.
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of mass and the boundary points of a binary object based on its topology (Figure 1A, Figure S1, Table S2). These principal 
axes correspond to anatomical short axis view, and two long axis views that are perpendicular to the “En-face” short axis view. 
These three orientation vectors can be manually corrected by the user, if necessary, to properly orient the desired anatomical 
views.

We require annotation of four landmark points to complete the analysis. The first landmark point is initialized from the 
center of mass of the aortic root model and is then corrected such that it falls at the level of the STJ plane and centered at 
the aortic annulus in the short-axis orientation Figure 1C. Next, using the estimated position of the center of the aortic root, 
the boundary points and the short-axis direction. We proceed to find the maximum elevation points in a directed direction 
towards the LVOT. These points are then filtered to localize probable location of valve hinge points. The initial location of 
these three points is corrected manually, such that the points are centered at each cusp and ordered sequentially as NCC, 
RCC, LCC, respectively Figure 1D.

The final STJ point and the orientation axes together uniquely define a new local coordinate system that is relative to 
the aortic valve leaflets. The basis vectors of this coordinate system 
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The original frame of reference is represented as , ,x y z  corresponding to anatomic sagittal, coronal, and axial views, 
respectively (Figure 1A, left panel). The rotation angles required to transform the original frame of reference to the local 
frame are determined from the final “En-face” short axis plane normal (Figure 1A, right panel), yielding rotations about 
the original frame with angles , ,α β γ  respectively about each axis Eq. [3]. The translation vector 
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 is determined from STJ 
landmark point defined as , ,x y zC C C . The entire affine transformation is later used to realign the image direction, so that 
the long axis of the valve is now parallel to the unit 0z = and leaflet faces are parallel to the 0z =  plane. This is necessary to 
accurately determine the spatial position of calcific voxels for distance map generation.

Table S1 CT acquisition information

CT protocol information CT scanning parameters

Acquisition Retrospective gated

Slice thickness 0.625 or 3 mm

Tube rotation 0.35 s

Pitch 0.24:1

Tube voltage 120 kV

Tube current 400–500 mA

Reconstruction ASIR at 30%

Cardiac phase selected Best diastole (70–75%) cardiac cycle

CT, computed tomography; ASIR, adaptive statistical iterative reconstruction.
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Calcium detection [false positive rate (FPR) method]

When viewing the aortic valve (AV) region of interest (ROI) in cases of AS from CT images, we can observe disconnected 
groups of calcific lesions. These lesions are presented as relatively brighter intensities compared to tissue and lumen. The 
presence of the contrast agent makes the lower and upper bounds of these intensities practically unknown which is in part 
due to differences in contrast absorption for each patient (53). Therefore, given that the calcific intensity average will be 
statistically higher than surrounding objects, a procedure that can grow iteratively from an initial HU estimate is required. 
The initial estimate of calcific HU threshold is based on average HU of the partial aortic root model. In our proposed 
implementation we proceed based on the following steps. Using the initial HU estimation, we iteratively increase the HU 
threshold in steps of 1 HU unit. This is performed exhaustively until a minimum false positive rate criteria is reached (1%). 
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Table S2 Overview of operations/filters used in the platform, input, output and parameters used where applicable

Procedure Input Value Output

Crop and resample Size Patient specific Resampled image [image (HU)]

Resolution 0.5 mm

Fast marching Speed sigma 0.65 Binary mask

No. of iterations 300

Seed point location Center of aortic root [1]

Morphological closing Kernel radius 2 Binary mask

Smoothing Sigma 0.5 Aortic root model (binary mask)

Kernel radius 2

Principal axes 
determination

Aortic root model Binary mask [4] Direction matrix

Shape boundary

Geometric center

FPR Aortic root model Binary mask [4] Calcification model (binary mask)

Resampled image Image (HU) [1]

False positive rate threshold 0.01 = 1%

Quantify calcification Calcification model Binary mask [6] Regional calcification map (binary mask)

Principal axes orientation 3×3 direction matrix [5] Radial distance map (image [mm])

Landmark points 4 points [5] Longitudinal distance map (image [mm])

Volume Binary mask [6] Calcification intensity map (image [HU])

Regional mapping STJ height Patient specific Anatomical 18 region volume map

Annular radius Derived from patient specific annular area

Interleaflet triangle angles Patient specific Anatomical 18 region average intensity 
map

Calcification model Binary mask [6]

Principal axes orientation 3×3 direction matrix [5]
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threshold is increased, we expect this rate to decrease as the number of luminal pixels mislabeled as calcific decreases. This 
representation yields a non-linear relationship between the rate and HU threshold of detection which can then be treated as 
a constrained global minimization problem Figure 2C. However, the discrete function representation does not have a global 
minimum and a specific constraint must be set to avoid overshooting an optimal threshold. We used a minimum of 0.01/1% 
FPR to stop the iterations and find the optimal threshold. We expect that iterative scheme combined with a global constraint 
can yield calcific detection thresholds that are robust to variations in intraluminal contrast, calcific density and other image 
specific factors.

The flowchart of the calcification detection pipeline is shown in Figure S1 and the parameters used to initialize the shape 
overlap algorithm is presented in Table S2.

Volume and geometric analysis

The final segmented calcium region (Figure 2A,2B, red region) is presented as a binary image with values of one in pixels 
where calcium was detected and values of zero in pixels lacking calcium. We can proceed to determine the volume score based 
on Eq. [7]
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the previous uniform resampling is 0.5 as mm per direction, giving a total volume score in mm3.
Since the image volume is now oriented with the long axis of the valve parallel to the Z unit vector, topographic distance 

maps of the segmented calcium volume can be generated by first converting all pixel coordinates into a physical cartesian 
coordinate space using the conversion in Eq. [8]
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Where P
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 represents the resulting physical space position of an image pixel at some index I


, and O


 is the physical 
space origin of the first image index. This transformation is automatically handled using the function transform index to 
physical point (50) and repeated for each pixel index in the image volume. Next, we need to change the basis of each physical 
coordinate to the local aortic valve system we previously defined in section Calcium detection (shape overlap method). This is 
accomplished by simple dot product with the transformation matrix that defines the new system Eq. [9].

A conversion from cartesian to cylindrical coordinates can then be applied to P


 for each image pixel, using the 
transformation in Eq. [10].
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These transformations enable the generation of both radial and longitudinal distance maps relative to the aortic sinuses 
landmark point (Figure 1B). Image pixel values are set as 2 2 1 2
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； ；  for radial, angular and longitudinal maps respectively. 
These new distance image maps can be then used to introduce the anatomical regional mapping scheme in order to precisely 
quantify calcific content via the schematic described in Figure 1C. The regional map relies on successive binary thresholding 
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operations followed by a Boolean intersection (&) operation where in this case the thresholds are determined from the patient 
specific dimensions of the STJ Height ( h ), Annular area derived radius ( 2 2 1 2
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； ；) and the specific interleaflet triangle angles that 
demarcate the angular extent of each leaflet ( ncc rcc lccθ θ θ, , ). The specific thresholds used as per the proposed 18 region map 
scheme Figure 1C is explicitly described in Eq. [11]. The specific percentage multipliers and patient specific ranges were based 
on common presentation of a normal tricuspid valve anatomy Figure 1C (37) and aim to equalize the area of each region to 
facilitate comparison with increasing angle divisions as we move towards the attachment from the coaptation zone and fixed 
radial intervals 0.5r apart.

                                                                                                                                                                                                  [11]

Where R, A and L are distance map images with values for each pixel i defined as the radial, angular and longitudinal 
distance respectively (Eq. [11]) relative to a point located at the STJ plane and centered in relation to the aortic annulus 
section Calcium detection (shape overlap method). The procedure finds all pixels that satisfy the cylindrical thresholding 
criteria in each dimension and then combines all the identified pixels via an intersection/Boolean and operation &. The 
flowchart of the calcification topographic mapping pipeline is shown in Figure S1 and Table S2, 3D distance image views of the 
quantification maps on top of the valve surface and the ROI, are shown in Figure 5A-5F. The final conformal representation 
of the measured regional quantities is presented in Figure 5G-5J.

Normalization of the metrics

For normalizing the volume scores (Vsd) of the contrast scores, we defined an approximation of annular radius from the 
annular area that was measured using CT for all patients as follows (54):

VsIndexed Contrast Calcific Volume
Annular area

=                                                                                                                        [12]

We then estimated the annular radius of a circular aortic annulus using the area as follows:



© Quantitative Imaging in Medicine and Surgery. All rights reserved. https://dx.doi.org/10.21037/qims-23-778

2

Annular area

Annular radius π=                                                                                                                                               [13]

This normalization procedures are critical to interpret the proposed metrics in the presence of variabilities in valve 
dimensions, patient size and gender variability (55).
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