

\qquad

 much seal
provideol．

 nonenhancic．
magain（eg
grade III）
Proporion of
edema
 componennt．

 Enhancement of the overying pia in oontinuity with enhancing or
nononnanan ing tumor

| $\substack{\text { Ependymal } \\ \text { invasion }}$ | $\begin{array}{l}\text { Invasion of any adiacent epin } \\ \text { nonennhananing tumor matrix }\end{array}$ |
| :--- | :--- | | $1=100$ |
| :--- |
| $\substack{0=-1=\text { No } \\ 2=\text { ees }}$ |

Satellites An area of ennancement within the region of sinal aboormalis usrounding o＝

Table S2 MRI image acquisition protocol parameters from 3 centers

Parameters	A	B	C
Scanner type	GE Signa HDxt 3.0T (GE Medical Systems, Chicago, IL, USA)	Siemens Skyra 3.0T (Siemens Healthineers, Erlangen, Germany)	GE Discovery MR750 3.0T (GE Medical Systems, Chicago, IL, USA)
Magnetic field strength	3.0T	3.0T	3.0T
T1C (T1 contrast enhanced)			
Repetition time (ms)	225	459	549
Echo time (ms)	4.8	3	5.72
Flip angle (${ }^{\circ}$)	90	90	90
Image slice thickness (mm)	2	2	2
Image slice spacing (mm)	1	0.5	1
T2f (T2-FLAIR)			
Repetition time (ms)	8,000	7,000	8,000
Echo time (ms)	101	79	100
Flip angle (${ }^{\circ}$)	150	180	110
Image slice thickness (mm)	5	5	5
Image slice spacing (mm)	5	2	2

[^0]| Index | Label (ATRX mutant $=1$, ATRX wild type $=0$) | Age (years) | Gender | WHO grade | VASARI score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000-1 | 0 | 34 | F | 4 | 77 |
| 000-2 | 0 | 34 | m | 4 | 78 |
| 000-3 | 0 | 64 | M | 4 | 77 |
| 000-4 | 0 | 50 | F | 3 | 75 |
| 000-5 | 0 | 53 | M | 4 | 80 |
| 000-6 | 0 | 57 | м | 3 | 66 |
| 000-7 | 0 | 65 | M | 4 | 84 |
| 000-8 | 0 | 65 | F | 3 | 67 |
| 000-9 | 0 | 69 | F | 3 | 68 |
| 000-10 | 0 | 50 | F | 3 | 62 |
| 000-11 | 0 | 67 | F | 3 | 84 |
| 000-12 | 0 | 56 | m | 3 | 76 |
| 000-13 | 0 | 64 | M | 3 | 78 |
| 000-14 | 0 | 70 | F | 4 | 66 |
| 000-15 | 0 | 55 | M | 3 | 74 |
| 000-16 | 0 | 55 | F | 4 | 78 |
| 000-17 | 0 | 57 | M | 4 | 81 |
| 000-18 | 0 | 45 | M | 4 | 71 |
| 000-19 | 0 | 51 | M | 4 | 66 |
| 000-20 | 0 | 53 | F | 3 | 78 |
| 000-21 | 0 | 65 | F | 3 | 80 |
| 000-22 | 0 | 46 | F | 3 | 80 |
| 000-23 | 0 | 60 | F | 4 | 72 |
| 000-24 | 0 | 34 | M | 4 | 69 |
| 000-25 | 0 | 36 | м | 4 | 58 |
| 000-26 | 0 | 33 | F | 4 | 78 |
| 000-27 | 0 | 79 | m | 3 | 84 |
| 000-28 | 0 | ${ }^{43}$ | F | 4 | 76 |
| 000-29 | 0 | 56 | F | 4 | 64 |
| 000-30 | 0 | 45 | F | 3 | 79 |
| 000-31 | 0 | 39 | M | 4 | 72 |
| 000-32 | 0 | 46 | M | 4 | 75 |
| 000-33 | 0 | 49 | м | 4 | 84 |
| 000-34 | 0 | 67 | F | 3 | 58 |
| 000-35 | 0 | 58 | F | 4 | 65 |
| 000-36 | 0 | 59 | M | 4 | 70 |
| 000-37 | 0 | 58 | F | 3 | 66 |
| 000-38 | 0 | 49 | F | 3 | 76 |
| 000-39 | 0 | 40 | M | 3 | 65 |
| 000-40 | 0 | 27 | F | 3 | 66 |
| 000-41 | 0 | 40 | м | 3 | 67 |
| 000-42 | 0 | 41 | M | 3 | 69 |
| 000-43 | 0 | 66 | F | 3 | 72 |
| 000-44 | 0 | 65 | m | 3 | 67 |
| 000-45 | 0 | 48 | F | 3 | 83 |
| 000-46 | 0 | 42 | F | 3 | 77 |
| 000-47 | 0 | 57 | м | 3 | 75 |
| 000-48 | 0 | 34 | F | 4 | 67 |
| 000-49 | 0 | 65 | F | 3 | 78 |
| 000-50 | 0 | 64 | m | 3 | 65 |
| 000-51 | 0 | 54 | F | 4 | 66 |
| 000-52 | 0 | 66 | M | 4 | 67 |
| 000-53 | 0 | ${ }^{43}$ | M | 3 | 78 |
| 000-54 | 0 | 44 | м | 4 | 80 |
| 000-55 | 0 | 54 | F | 4 | 81 |
| 000-56 | 0 | 55 | M | 3 | 67 |
| 000-57 | 0 | ${ }^{43}$ | M | 4 | 77 |
| 000-58 | 0 | 45 | F | 3 | 78 |
| 000-59 | 0 | 60 | M | 3 | 67 |
| 000-60 | 0 | 55 | M | 4 | 69 |
| 000-61 | 0 | 65 | F | 3 | 77 |
| 000-62 | 0 | 44 | M | 4 | 68 |
| 000-63 | 0 | 56 | M | 3 | 64 |
| 000-64 | 0 | 67 | M | 4 | 71 |
| 000-65 | 0 | 65 | F | 3 | 62 |
| 000-66 | 0 | 66 | M | 4 | 72 |
| 000-67 | 0 | 67 | m | 3 | 74 |
| 000-68 | 0 | 70 | M | 3 | 83 |
| 000-69 | 0 | 50 | F | 3 | 88 |
| 000-70 | 0 | 51 | M | 3 | 85 |
| 000-71 | 0 | 61 | F | 4 | ${ }_{6}$ |
| 000-72 | 0 | 67 | M | 3 | 69 |
| 000-73 | 0 | 56 | M | 3 | 81 |
| 000-74 | 0 | 60 | M | 4 | 69 |
| 000-75 | 0 | 64 | M | 3 | 74 |
| 000-76 | 0 | 70 | F | 4 | 69 |
| 000-77 | 0 | 76 | M | 4 | 69 |
| 000-78 | 0 | 51 | M | 3 | 77 |
| 000-79 | 0 | 41 | м | 3 | 72 |
| 000-80 | 0 | 57 | F | 4 | 69 |

Table S3 (continued)

Index	Label (ATRX mutant $=1$, ATRX wild type $=0$)	Age (years)	Gender	WHO grade	VASARI score
000-81	0	41	F	3	71
000-82	0	54	F	3	79
000-83	0	61	м	3	76
000-84	0	43	F	3	65
000-85	0	44	M	3	78
000-86	0	69	F	3	69
000-87	0	54	M	4	71
000-88	0	56	м	4	75
000-89	0	54	F	3	83
000-90	0	50	м	4	78
000-91	0	43	м	3	72
000-92	0	21	F	3	62
000-93	0	67	м	4	73
000-94	0	36	F	3	69
000-95	0	61	M	4	78
000-96	0	52	м	3	70
000-97	0	23	м	4	69
000-98	0	58	F	4	72
000-99	0	70	M	4	75
000-100	0	57	м	4	69
000-101	0	51	M	4	71
000-102	0	74	F	4	80
000-103	0	52	F	3	70
000-104	0	76	F	4	83
000-105	0	72	F	4	79
000-106	0	56	m	3	58
000-107	0	56	м	3	62
000-108	0	68	м	4	71
000-109	0	66	F	4	75
000-110	0	52	F	4	80
000-111	0	57	м	3	66
000-112	0	74	m	4	70
000-113	0	78	м	4	69
000-114	0	63	м	4	74
100-1	1	64	m	4	69
100-2	1	53	м	4	69
100-3	1	61	F	4	69
100-4	1	41	M	4	66
100-5	1	53	м	4	76
100-6	1	45	м	4	78
100-7	1	34	F	4	78
100-8	1	66	M	4	65
$100-9$	1	71	м	4	75
100-10	1	52	м	4	73
100-11	1	66	M	4	64
100-12	1	36	м	4	75
100-13	1	50	M	4	66
100-14	1	54	м	4	77
100-15	1	49	м	4	76
100-16	1	30	F	4	69
100-17	1	67	M	4	65
100-18	1	55	M	4	78
100-19	1	49	m	4	66
100-20	1	50	m	4	${ }^{68}$
100-21	1	72	м	4	70
100-22	1	57	м	4	77
100-23	1	46	F	4	69
100-24	1	57	M	4	71
100-25	1	30	M	4	80
100-26	1	45	F	4	68
100-27	1	47	M	4	77
100-28	1	55	м	4	78
100-29	1	51	F	4	63
100-30	1	48	F	4	76
100-31	1	58	м	4	75
100-32	1	52	F	4	66
100-33	1	70	F	4	66
100-34	1	66	M	4	67
100-35	1	52	м	3	79
100-36	1	18	F	4	78
100-37	1	49	M	4	64
100-38	1	${ }^{73}$	F	4	72
100-39	1	73	F	4	77
100-40	1	51	M	3	65
100-41	1	46	F	4	74
100-42	1	37	F	4	71
100-43	1	56	M	4	66
100-44	1	64	F	4	84

Table S3 (contimued)

Index	Label (ATRX mutant $=1$, ATRX wild type $=0$)	Age (years)	Gender	WHO grade	VASARI score
100-45	1	76	F	4	70
100-46	1	63	F	4	78
100-47	1	54	F	3	73
100-48	1	50	F	4	67
100-49	1	50	M	3	73
100-50	1	85	M	4	74
100-51	1	51	M	4	70
100-52	1	49	M	3	78
100-53	1	74	M	4	65
100-54	1	33	F	4	65
100-55	1	51	M	4	55
100-56	1	54	M	3	74
100-57	1	55	M	3	65
100-58	1	68	F	3	59
100-59	1	55	F	4	69
100-60	1	59	M	3	71
100-61	1	53	F	3	69
100-62	1	54	M	3	71
100-63	1	40	F	3	68
100-64	1	48	M	3	68
100-65	1	51	m	3	71
100-66	1	25	F	3	73
100-67	1	48	F	3	68
100-68	1	63	F	3	54
100-69	1	53	F	4	73
100-70	1	56	M	4	69
100-71	1	64	F	4	70
100-72	1	39	F	3	67
100-73	1	61	M	4	71
100-74	1	58	M	3	72
100-75	1	52	M	3	67
100-76	1	44	M	3	65
100-77	1	58	M	3	65
100-78	1	53	F	3	68
100-79	1	58	M	4	69
100-80	1	46	F	4	81
100-81	1	${ }^{63}$	F	4	77
100-82	1	56	M	3	73
100-83	1	54	F	3	69
100-84	1	77	M	3	74
100-85	1	25	F	3	76
100-86	1	66	M	4	76
100-87	1	67	F	4	65
100-88	1	73	M	4	84
100-89	1	71	M	4	67
100-90	1	50	м	3	69
100-91	1	55	m	4	77
100-92	1	71	F	4	71
100-93	1	53	M	4	71
100-94	1	52	м	4	69
100-95	1	26	F	3	74
100-96	1	75	M	4	68
100-97	1	53	F	4	65
100-98	1	60	F	4	72
100-99	1	50	M	4	84
100-100	1	16	F	4	77
100-101	1	16	M	3	67
100-102	1	40	M	3	80
100-103	1	41	F	4	81
100-104	1	48	F	3	${ }^{63}$
100-105	1	46	M	3	70
100-106	1	38	M	4	82
100-107	1	50	м	3	68
100-108	1	53	F	4	69
100-109	1	26	F	4	76
100-110	1	33	F	3	65
100-111	1	44	M	4	77
100-112	1	46	M	3	52
100-113	1	17	F	4	75
100-114	1	53	M	4	77
100-115	1	54	F	4	80
100-116	1	40	M,	4	84
100-117	1	64	F	4	75
100-118	1	40	M	3	60
100-119	1	63	M	4	83
100-120	1	57	F	3	59

female; M , male.

Table S4 The result of Delong test

Corresponding to different models	Training set	Validation set
Edema DL--edema radio	0.51	0.284
Edema DL--edema hybrid	0.266	0.153
Edema DL--tumor DL	0.401	0.206
Edema DL--tumor radio	0.998	0.67
Edema DL--tumor hybrid	0.427	0.074
Edema DL--overall DL	z	0.081
Edema DL--overall radio	0.137	0.142
Edema DL--overall hybrid	0.338	0.072
Edema radio--edema hybrid	0.569	0.469
Edema radio--tumor DL	0.823	0.863
Edema radio--tumor radio	0.467	0.566
Edema radio - -tumor hybrid	0.854	0.52
Edema radio--overall DL	0.649	0.689
Edema radio--overall radio	0.993	0.337
Edema radio--overall hybrid	0.709	0.127
Edema hybrid--tumor DL	0.733	0.941
Edema hybrid- -tumor radio	0.099	0.443
Edema hybrid- -tumor hybrid	0.708	0.665
Edema hybrid--overall DL	0.912	0.877
Edema hybrid--overall radio	0.843	0.336
Edema hybrid--overall hybrid	0.846	0.338
Tumor DL--tumor radio	0.345	0.442
Tumor DL--tumor hybrid	0.964	0.353
Tumor DL--overall DL	0.706	0.611
Tumor DL--overall radio	0.835	0.706
Tumor DL--overall hybrid	0.873	0.48
Tumor radio--tumor hybrid	0.365	0.157
Tumor radio--overall DL	0.241	0.32
Tumor radio--overall radio	0.506	0.177
Tumor radio--overall hybrid	0.288	0.081
Tumor hybrid--overall DL	0.725	0.632
Tumor hybrid --overall radio	0.863	0.911
Tumor hybrid --overall hybrid	0.848	0.91
Overall DL--overall radio	0.676	0.857
Overall DL--overall hybrid	0.931	0.6
Overall radio--overall hybrid	0.726	0.333

[^1]

Figure S1 The feature correlation coefficient analysis.

Figure S2 The feature correlation coefficient analysis. (A) Overall hybrid model classification performance on the validation set; (B) overall hybrid model classification performance on the test set.

Appendix 1 Image preprocessing

First, we rigidly aligned each T1c volume to T2f using advanced normalization tools (ANTs). In order to eliminate the difference in brightness on MR images caused by factors such as the scanner itself and many unknown problems, N4 bias field correction was performed using SimpleITK. This employs a hybrid white stripe [22] approach for intensity normalization and uses the ANTs and White Stripe packages in R to complete a statistically principled process of image normalization that preserves intertissue grade and matches the intensity of the tissue without disrupting the natural balance of tissue intensities [23]. At last, isotropic resolution is resampled by using a linear interpolator to reinterpolate all images to $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}$ pixel in the normalized axes.

For the specific formula of radiomics characteristics, see the official Pyradiomics website (https://pyradiomics. readthedocs.io/en/latest). The feature calculation method was used to extract first-order statistics, shape and size, texture, and other features. The specific calculation formulae are listed below follows:

First-order statistics features

First-order statistics features describe the gray-level distribution of all voxels within the ROI.

Let X be a set of all voxels included in the ROI, Np the number of voxels in $\mathrm{X}, \mathrm{P}(\mathrm{i})$ the first-order histogram with Ng discrete intensity levels, $\mathrm{p}(\mathrm{i})$ the normalized first-order histogram equal to $\mathrm{P}(\mathrm{i}) / \mathrm{Np}$, and c the optional value, which shifts the intensities to prevent negative values in X .

1. Energy
energy $=\sum_{i=1}^{N_{p}}(\mathbf{X}(i)+c)^{2}$
2. Total energy
totalenergy $=V_{\text {voxel }} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)+c)^{2}$
3. Entropy
entropy $=-\sum_{i=1}^{N_{g}} p(i) \log _{2}(p(i)+\epsilon)$
ϵ is an arbitrarily small positive number $\left(\approx 2.2 \times 10^{-16}\right)$
4. Minimum

[^2]5. 10th percentile

The 10th percentile of X
6. $90^{\text {th }}$ percentile

The $90^{\text {th }}$ percentile of X
7. Maximum

maximum $=\max (\mathbf{X})$

8. Mean

$$
\text { mean }=\frac{1}{N_{p}} \sum_{i=1}^{N_{p}} \mathbf{X}(i)
$$

9. Median

The median gray-level intensity within the ROI.
10. Interquartile range

interquartilerange $=\mathbf{P}_{75}-\mathbf{P}_{25}$

11. Range

$$
\text { range }=\max (\mathbf{X})-\min (\mathbf{X})
$$

12. Mean absolute deviation
$M A D=\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}|\mathbf{X}(i)-\bar{X}|$
13. Robust mean absolute deviation (rMAD)
$r M A D=\frac{1}{N_{10-90}} \sum_{i=1}^{N_{10-90}}\left|\mathbf{X}_{10-90}(i)-\bar{X}_{10-90}\right|$
14. Root mean squared (RMS)
$R M S=\sqrt{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)+c)^{2}}$
15. Skewness
skewness $=\frac{\mu_{3}}{\sigma^{3}}=\frac{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)-\bar{X})^{3}}{\left(\sqrt{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)-\bar{X})^{2}}\right)^{3}}$
16. Kurtosis
kurtosis $=\frac{\mu_{4}}{\sigma^{4}}=\frac{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)-\bar{X})^{4}}{\left(\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)-\bar{X})^{2}\right)^{2}}$
17. Variance
variance $=\frac{1}{N_{p}} \sum_{i=1}^{N_{p}}(\mathbf{X}(i)-\bar{X})^{2}$
18. Uniformity
uniformity $=\sum_{i=1}^{N_{g}} p(i)^{2}$

Shape and size features:

This group of features describe the 3-dimensional size and shape of the ROI. Features were derived from a triangle mesh generated using a marching cubes algorithm based on the ROI.
Let Nv be the number of voxels included in the ROI, Nf the number of faces defining the Mesh, V the volume of the mesh in millimeters cubed, and A the surface area of the mesh in millimeters squared.

1. Mesh volume

$$
\begin{aligned}
& V_{i}=\frac{O a_{i} \cdot\left(O b_{i} \times O c_{i}\right)}{6} \\
& V=\sum_{i=1}^{N_{f}} V_{i}
\end{aligned}
$$

2. Voxel volume

$$
V_{v o x e l}=\sum_{k=1}^{N_{v}} V_{k}
$$

3. Surface area

$$
\begin{aligned}
& A_{i}=\frac{1}{2}\left|\mathrm{a}_{i} \mathrm{~b}_{i} \times \mathrm{a}_{i} \mathrm{c}_{i}\right| \\
& A=\sum_{i=1}^{N_{f}} A_{i}
\end{aligned}
$$

4. Surface area to volume ratio
surfacetovolumeratio $=\frac{A}{V}$
5. Sphericity
sphericity $=\frac{\sqrt[3]{36 \pi V^{2}}}{A}$
6. Maximum 3D diameter

Maximum 3D diameter is defined as the largest pairwise Euclidean distance between the tumor surface mesh vertices.
7. Maximum 2D diameter (slice)

Maximum 2D diameter (slice) is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the row-column (generally the axial) plane.
8. Maximum 2D diameter (column)

Maximum 2D diameter (column) is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the row-slice (usually the coronal) plane.
9. Maximum 2D diameter (row)

Maximum 2D diameter (row) is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the column-slice (usually the sagittal) plane.
10. Major axis length

$$
\text { majoraxis }=4 \sqrt{\lambda_{\text {major }}}
$$

11. Minor axis length

$$
\text { minoraxis }=4 \sqrt{\lambda_{\text {minor }}}
$$

12. Least axis length
leastaxis $=4 \sqrt{\lambda_{\text {least }}}$
13. Elongation
elongation $=\sqrt{\frac{\lambda_{\text {minor }}}{\lambda_{\text {major }}}}$
14. Flatness
flatness $=\sqrt{\frac{\lambda_{\text {least }}}{\lambda_{\text {major }}}}$

Textural features

Textural features reflect information about the spatial arrangement of voxel intensities and therefore could describe the homogeneity of the ROI. In our study, textural features were derived from 4 statistical feature matrices: 22 from the gray-level co-occurrence matrix (GLCM), 16 from the gray-level run-length texture matrix (GLRLM), 16 from the gray-level size zone matrix (GLSZM), 14 from the graylevel dependence matrix (GLDM), and 5 from neighboring gray-scale difference matrix (NGTDM).

Gray-level co-occurrence matrix (GLCM)

1. Autocorrelation
autocorrelation $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i, j) i j$
2. Joint average
jointaverage $=\mu_{x}=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i, j) i$
3. Cluster prominence
clusterprominence $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}\left(i+j-\mu_{x}-\mu_{y}\right)^{4} p(i, j)$
4. Cluster shade
clustershade $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}\left(i+j-\mu_{x}-\mu_{y}\right)^{3} p(i, j)$
5. Cluster tendency
clustertendency $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}\left(i+j-\mu_{x}-\mu_{y}\right)^{2} p(i, j)$
6. Contrast
contrast $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}(i-j)^{2} p(i, j)$
7. Correlation
correlation $=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i, j) i j-\mu_{x} \mu_{y}}{\sigma_{x}(i) \sigma_{y}(j)}$
8. Difference average
differenceaverage $=\sum_{k=0}^{N_{g}-1} k p_{x-y}(k)$
9. Difference entropy
differenceentropy $=\sum_{k=0}^{N_{g}-1} p_{x-y}(k) \log _{2}\left(p_{x-y}(k)+\epsilon\right)$
10. Difference variance
differencevariance $=\sum_{k=0}^{N_{\mathrm{z}}-1}(k-D A)^{2} p_{x-y}(k)$
11. Joint energy
jointenergy $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}(p(i, j))^{2}$
12. Joint entropy
jointentropy $=-\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i, j) \log _{2}(p(i, j)+\epsilon)$
13. Informational measure of correlation (IMC) 1
$I M C 1=\frac{H X Y-H X Y 1}{\max \{H X, H Y\}}$
14. Informational measure of correlation (IMC) 2
$I M C 2=\sqrt{1-e^{-2(H X Y 2-H X Y)}}$
15. Inverse difference moment (IDM)
$I D M=\sum_{k=0}^{N_{g}-1} \frac{p_{x-y}(k)}{1+k^{2}}$
16. Inverse difference moment normalized (IDMN)
$I D M N=\sum_{k=0}^{N_{g}-1} \frac{p_{x-y}(k)}{1+\left(\frac{k^{2}}{N_{g}^{2}}\right)}$
17. Inverse difference (ID)
$I D=\sum_{k=0}^{N_{g}-1} \frac{p_{x-y}(k)}{1+k}$
18. Inverse difference normalized (IDN)
$I D N=\sum_{k=0}^{N_{g}-1} \frac{p_{x-y}(k)}{1+\left(\frac{k}{N_{g}}\right)}$
19. Inverse variance
inversevariance $=\sum_{k=1}^{N_{g}-1} \frac{p_{x-y}(k)}{k^{2}}$
20. Maximum probability
maximumprobability $=\max (p(i, j))$
21. Sum entropy
sumentropy $=\sum_{k=2}^{2 N_{g}} p_{x+y}(k) \log _{2}\left(p_{x+y}(k)+\epsilon\right)$
22. Sum of squares
sumsquares $=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}\left(i-\mu_{x}\right)^{2} p(i, j)$

Gray-level run-length texture matrix (GLRLM)

1. Short run emphasis (SRE)
$S R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \frac{\mathbf{P}(i, j \mid \theta)}{j^{2}}}{N_{r}(\theta)}$
2. Long run emphasis (LRE)
$L R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \mathbf{P}(i, j \mid \theta) j^{2}}{N_{r}(\theta)}$
3. Gray-level nonuniformity (GLN)
$G L N=\frac{\sum_{i=1}^{N_{g}}\left(\sum_{j=1}^{N_{r}} \mathbf{P}(i, j \mid \theta)\right)^{2}}{N_{r}(\theta)}$
4. Gray-level nonuniformity normalized (GLNN)
$G L N N=\frac{\sum_{i=1}^{N_{g}}\left(\sum_{j=1}^{N_{r}} \mathbf{P}(i, j \mid \theta)\right)^{2}}{N_{r}(\theta)^{2}}$
5. Run length nonuniformity (RLN)
$R L N=\frac{\sum_{j=1}^{N_{r}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j \mid \theta)\right)^{2}}{N_{r}(\theta)}$
6. Run length nonuniformity normalized (RLNN)
$R L N N=\frac{\sum_{j=1}^{N_{r}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j \mid \theta)\right)^{2}}{N_{r}(\theta)^{2}}$
7. Run percentage (RP)
$R P=\frac{N_{r}(\theta)}{N_{p}}$
8. Gray-level variance (GLV)
$G L V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} p(i, j \mid \theta)(i-\mu)^{2}$
9. Run variance (RV)
$R V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} p(i, j \mid \theta)(j-\mu)^{2}$
10. Run entropy (RE)
$R E=-\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} p(i, j \mid \theta) \log _{2}(p(i, j \mid \theta)+\epsilon)$
11. Low gray-level run emphasis (LGLRE)
$L G L R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \frac{\mathbf{P}(i, j \mid \theta)}{i^{2}}}{N_{r}(\theta)}$
12. High gray-level run emphasis (HGLRE)
$H G L R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \mathbf{P}(i, j \mid \theta) i^{2}}{N_{r}(\theta)}$
13. Short run low gray-level emphasis (SRLGLE)
$S R L G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \frac{\mathbf{P}(i, j \mid \theta)}{i^{2} j^{2}}}{N_{r}(\theta)}$
14. Short run high gray-level emphasis (SRHGLE)
$S R H G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \frac{\mathbf{P}(i, j \mid \theta) i^{2}}{j^{2}}}{N_{r}(\theta)}$
15. Long run low gray-level emphasis (LRLGLE)
$L R L G L R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \frac{\mathbf{P}(i, j \mid \theta) j^{2}}{i^{2}}}{N_{r}(\theta)}$
16. Long run high gray-level emphasis (LRHGLE)
$L R H G L R E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} \mathbf{P}(i, j \mid \theta) i^{2} j^{2}}{N_{r}(\theta)}$
Gray-level size zone matrix (GLSZM)
17. Small area emphasis (SAE)
$S A E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \frac{\mathbf{P}(i, j)}{j^{2}}}{N_{z}}$
18. Large area emphasis (LAE)
$L A E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \mathbf{P}(i, j) j^{2}}{N_{z}}$
19. Gray-level nonuniformity (GLN)
$G L N=\frac{\sum_{i=1}^{N_{g}}\left(\sum_{j=1}^{N_{s}} \mathbf{P}(i, j)\right)^{2}}{N_{z}}$
20. Gray-level nonuniformity normalized (GLNN)
$G L N N=\frac{\sum_{i=1}^{N_{g}}\left(\sum_{j=1}^{N_{s}} \mathbf{P}(i, j)\right)^{2}}{N_{z}^{2}}$
21. Size-zone nonuniformity (SZN)
$S Z N=\frac{\sum_{j=1}^{N_{s}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j)\right)^{2}}{N_{z}}$
22. Size-zone nonuniformity normalized (SZNN)
$S Z N N=\frac{\sum_{j=1}^{N_{s}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j)\right)^{2}}{N_{z}^{2}}$
23. Zone percentage (ZP)
$Z P=\frac{N_{z}}{N_{p}}$
24. Gray-level variance (GLV)
$G L V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} p(i, j)(i-\mu)^{2}$
25. Zone variance (ZV)
$Z V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} p(i, j)(j-\mu)^{2}$
26. Zone entropy (ZE)
$Z E=-\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} p(i, j) \log _{2}(p(i, j)+\epsilon)$
27. Low gray-level zone emphasis (LGLZE)
$L G L Z E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \frac{\mathbf{P}(i, j)}{i^{2}}}{N_{z}}$
28. High gray-level zone emphasis (HGLZE)
$H G L Z E=\frac{\sum_{i=1}^{N_{z}} \sum_{j=1}^{N_{s}} \mathbf{P}(i, j) i^{2}}{N_{z}}$
29. Small area low gray-level emphasis (SALGLE)

SALGLE $=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \frac{\mathbf{P}(i, j)}{i^{2} j^{2}}}{N_{z}}$
14. Small area high gray-level emphasis (SAHGLE)
$S A H G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \frac{\mathbf{P}(i, j) i^{2}}{j^{2}}}{N_{z}}$
15. Large area low gray-level emphasis (LALGLE)
$L A L G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \frac{\mathbf{P}(i, j) j^{2}}{i^{2}}}{N_{z}}$
16. Large area high gray-level emphasis (LAHGLE)

LAHGLE $=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{s}} \mathbf{P}(i, j) i^{2} j^{2}}{N_{z}}$
Gray-level dependence matrix (GLDM)

1. Small dependence emphasis (SDE)
$S D E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \frac{\mathbf{P}(i, j)}{i^{2}}}{N_{z}}$
2. Large dependence emphasis (LDE)
$L D E=\frac{\sum_{i=1}^{N_{z}} \sum_{j=1}^{N_{d}} \mathbf{P}(i, j) j^{2}}{N_{z}}$
3. Gray-level nonuniformity (GLN)
$G L N=\frac{\sum_{i=1}^{N_{g}}\left(\sum_{j=1}^{N_{d}} \mathbf{P}(i, j)\right)^{2}}{N_{z}}$
4. Dependence nonuniformity (DN)
$D N=\frac{\sum_{j=1}^{N_{d}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j)\right)^{2}}{N_{z}}$
5. Dependence nonuniformity normalized (DNN)
$D N N=\frac{\sum_{j=1}^{N_{d}}\left(\sum_{i=1}^{N_{g}} \mathbf{P}(i, j)\right)^{2}}{N_{z}^{2}}$
6. Gray-level variance (GLV)
$G L V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} p(i, j)(i-\mu)^{2}$, where $\mu=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} i p(i, j)$
7. Dependence variance (DV)
$D V=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} p(i, j)(j-\mu)^{2}$, where $\mu=\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} j p(i, j)$
8. Dependence entropy (DE)

DependenceEntropy $=-\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} p(i, j) \log _{2}(p(i, j)+\epsilon)$
9. Low gray-level emphasis (LGLE)
$L G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \frac{\mathbf{P}(i, j)}{i^{2}}}{N_{z}}$
10. High gray-level emphasis (HGLE)
$H G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \mathbf{P}(i, j) i^{2}}{N_{z}}$
11. Small dependence low gray-level emphasis (SDLGLE)
$S D L G L E=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \frac{\mathbf{P}(i, j)}{i^{2} j^{2}}}{N_{z}}$
12. Small dependence high gray-level emphasis (SDHGLE)

Measures the joint distribution of small dependence with higher gray-level values.
13. Large dependence low gray-level emphasis (LDLGLE)

LDLGLE $=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \frac{\mathbf{P}(i, j) j^{2}}{i^{2}}}{N_{z}}$
14. Large dependence high gray-level emphasis (LDHGLE)

LDHGLE $=\frac{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{d}} \mathbf{P}(i, j) i^{2} j^{2}}{N_{z}}$

Neighboring gray-scale difference matrix (NGTDM)

1. Coarseness

Coarseness $=\frac{1}{\sum_{i=1}^{N g} p_{i} s_{i}}$
2. Contrast

Contrast $=\left(\frac{1}{N_{g, k}\left(N_{g, p^{-1}}\right.} \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p_{i} p_{j}(i-j)^{2}\right)\left(\frac{1}{N_{v, p}} \sum_{i=1}^{N_{g}} s_{i}\right)$, where $p_{i} \neq 0, p_{j} \neq 0$
3. Busyness

Busyness $=\frac{\sum_{i=1}^{N g} p_{i} s_{i}}{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}\left|i p_{i}-j p_{j}\right|}$, where $p_{i} \neq 0, p_{j} \neq 0$
4. Complexity

Complexity $=\frac{1}{N_{v, p}} \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}}|i-j| \frac{p_{i} s_{i}+p_{j} s_{j}}{p_{i}+p_{j}}$, where $p_{i} \neq 0, p_{j} \neq 0$
5. Strength

Strength $=\frac{\sum_{i=1}^{N g} \sum_{j=1}^{N g}\left(p_{i}+p_{j}\right)(i-j)^{2}}{\sum_{i=1}^{N g} s_{i}}$, where $p_{i} \neq 0, p_{j} \neq 0$

Features extracted from wavelet-filtered images

After wavelet decomposition, low-level information hidden from the human eye can be exposed. In our study, Coiflet 1 wavelet was used to decompose the original image. High- and low-pass filters were applied stepwise on the x, y, and z coordinates, which generated 8 decompositions from 1 patient's image. The 14 first-order statistics and 68 textural features described above were extracted from all of 8 decompositions. Thus, a total of 728 wavelet features were extracted from each sequence.

Features extracted from Laplacian of Gaussian-filtered images

Application of a Laplacian of Gaussian filter to the input image yields a derived image for each Σ value specified. A Laplacian of Gaussian image is obtained by convolving the image with the second derivative (Laplacian) of a Gaussian kernel. The Gaussian kernel is used to smooth the image and is defined as follows:
$G(x, y, z, \sigma)=\frac{1}{(\sigma \sqrt{2 \pi})^{3}} e^{-\frac{x^{2}+y^{2}+z^{2}}{2 \sigma^{2}}}$
The Gaussian kernel is convolved with the Laplacian kernel $\nabla 2 \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, which is sensitive to areas with rapidly changing intensities, enhancing edges. The width of the filter in the Gaussian kernel is determined by σ and can be used to emphasize more fine (low σ values) or coarse (high σ values) textures.

Appendix 2 The formula for imaging score of imaging signature

Imaging Score $=$ DL_t1c_197 $\times(0.874)+$ DL_t2f_603 \times
$0.776+$ DL_t2f_732 $\times 0.248+$
DL_t2f_899 $\times 1.089+$ DL_t2f_961 $\times 0.791+$ DL_t1c_151 \times $(-0.633)+$
DL_t1c_446 $\times 0.1+$ Radio_t1c_GLCM_Contrast $\times(-0.847)$

+ Radio_t2f_GLSZM_Emphasis $\times(-0.8108)+$ DL_t2f_839
$\times 0.476+$ DL_t2f_244 $\times(-0.256)+$ DL_t2f_983 $\times 0.746+$
DL_t2f_Firstorder_Median $\times 0.440+$ Radio_t2f_GLCM_ Imc2 $\times 0.976+$
Radio_t2f_Firstorder_10Percentile $\times 1.17$ + Radio_t2f_ GLCM Average $\times 0.5937$
(DL, deep learning; t2f, T2 fluid-attenuated inversion recovery; T1c, contrast-enhanced T1-weighted; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix)

[^0]: MRI, magnetic resonance imaging; GE, General Electric Company; T1C, T1-contrast enhanced; T2f, T2 fluid attenuated inversion recovery.

[^1]: DL, deep learning.

[^2]: minimum $=\min (\mathbf{X})$

