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Appendix 1

Training details

Our implementation is based on the Pytorch 1.8 library (27).  
Pytorch is an open-source deep-learning library that 
supports the use of GPUs. It dramatically accelerates the 
iteration of the training process.

We simulated fully sampled K-space data from the input 
image by trajectory. Afterward, we used 20% of the data 
as the test data set. We also used 10-fold cross-validation 
on the remaining data set. After implementing the deep-
residual U-net, we applied the He Initializer (28) to 
initialize its weight. The weight decay rate was set at 0.0001. 
We also fine-tuned the hyperparameters to achieve better 
performance. In this study, we used the Adam optimizer, 
with an initial learning rate of 0.0003. The batch size and 
the momentum were set to 18 and 0.9, respectively. A 
dynamic early stopping method (19) was used in this work 
to address the issue of overfitting. The initial number 
of epochs was set to 10,000. The early stopping method 
automatically stopped the training process when the metrics 
of the validation data set did not decrease further (or the 
range of decreases did not reach the threshold). First, the 
early stopping method required an evaluation metric and 
an early stopping interval. The parameters that had the best 
performance compared to the parameters of the former 
epochs were saved. If the network did not improve after 
the number of early stopping intervals passed, it stopped 
automatically.

Training took about four minutes per epoch (in both 
the training and validation processes) for the deep-residual 
network on an NVIDIA RTX 8000 GPU. We also ran 
our code on the same GPU at the test time to exploit its 
computational speed. Predictions on the whole testing data 
took, on average, 30 minutes.

The actual training process is shown in Figure S1.

Visual analysis

Figures S2-S4 depict the comparison of the Dice coefficients 
and Hausdorff distances between the proposed and 
traditional architecture. As the figures show, for the 
different under-sampling rates, the proposed method usually 
achieved a higher Dice coefficient and lower Hausdorff 
distance than the traditional method. In relation to the view 
level, the WT dice measurement based on our architecture 
did not change greatly at a different rate for the remaining 
K-space data. However, the line chart of the traditional 
architecture appeared to significantly increase as the 
information in the images increased. Thus, our architecture 
was much more stable, as it was not greatly affected by the 
amount of K-space data, and it showed excellent adaption 
to the under-sampling situation, which is widely used at 
present.

Nevertheless, the line representing our architecture 
is generally positioned above those of the traditional 
architectures in the line charts. It also clearly demonstrates 
the advancements of the novel method. As for the 
Hausdorff distance at different statuses, our approach also 
had a stable horizontal line compared with the traditional 
methods, which demonstrates the superiority of our method 
in generating the detailed borders of the lesions.
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Figure S1 The training process on fully sampled K-space data. The gray line shows how training loss or training dice changed over the 
epoch. The red line shows how validation loss or validation dice changed over the epoch.

Figure S2 Comparison of the segmentation of the WT based on under-sampled K-space data with different under-sampling rates and the 
corresponding image data, respectively. The orange line represents the quantitative results based on the K-space data segmentation. The 
blue line represents the quantitative results based on image data segmentation. WT, whole tumor.
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Figure S3 Comparison of the segmentation of the TC based on under-sampled K-space data with different under-sampling rates and the 
corresponding image data, respectively. TC, tumor core.
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Figure S4 Comparison of the segmentation of the ET part based on under-sampled K-space data with different under-sampling rates and 
the corresponding image data, respectively. ET, enhanced tumor.


