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Supplementary

Appendix 1 Supplementary methods

The network structure and parameter setting of Inception-v3 model

In this study, the classical Inception-v3 model is initially adopted (39). The input ROI is initially resized to 299×299 
pixels. Next, the input image is processed through 6 convolutional layers and 1 max pooling layer in a sequential manner. 
Subsequently, the feature maps are fed into the Inception modules consecutively. Afterwards, the outputs of these modules are 
passed through an average pooling layer to filter feature information. Finally, the resulting feature vector is mapped to a two-
dimensional vector using three fully connected layers, and the prediction results are generated as output. The cross-entropy 
function is utilized as the loss function for model training in this study, as illustrated in Eq. [5]. 
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Among them, kI  and kC  represent the k  th region of interest image and its corresponding label, θ  represents the weights 
and biases estimated in the model, and K  represents the total number of training samples.

The network structure and parameter setting of graph attention network model

Firstly, select the 5 slices from the registered 3D voxel MR slice sequence, which are located in the middle and set the ROI as 
128×128. Construct a 3D voxel data with a dimension of 5×128×128, totaling 606 cases. Then, divide each case’s 5×128×128 
3D voxel into n small patches, replacing the original complete voxel with these n patches. It is assumed the value of n is 5 
and the size of each patch is 16×16. In subsequent experiments, the effects of different patch sizes and numbers are further 
analyzed. Each type of patch is flattened into a 1-dimensional vector, forming a feature vector with a dimension of 1×1,280. 
After passing through a fully connected layer for each of these 5 feature vectors, 5 feature vectors with dimensions of 1×128 
are obtained. These vectors represent the features of the voxel and serve as input nodes for the graph convolutional neural 
network. The entire data preprocessing process is shown in Figure S1.

By calculating the differences between patches in the hyperbilirubinemia and normal control groups, as well as within 
each group itself, we select patches that maximize inter-class differences and minimize intra-class differences. Finally, we 
choose the most representative k classes as the new data samples from the n classes of patches. The process of calculating the 
difference between patches is shown in Figure S2. We take 3 samples from the hyperbilirubinemia group and 3 samples from 
the normal control group, and provide explanations based on the extraction of 3 classes of patches from them. Among them, 
classes a, b, and c represent patches located in three different positions within the hyperbilirubinemia group, while classes 
d, e, and f represent regions in the normal control group corresponding to classes a, b, and c, respectively. For patch “a1” in 
hyperbilirubinemia sample 1, it is necessary to calculate the differences by comparing it with patches “a2” and “a3” in the 
same position from hyperbilirubinemia sample 2 and sample 3, respectively. By adding up the difference values from these 2 
comparisons, the calculation of intra-class differences is completed. Similarly, for patch “a1”, it is also necessary to calculate 
the differences by comparing it with patches “d1”, “d2”, and “d3” in the same position from normal control sample 1, sample 
2, and sample 3, respectively. By adding up the difference values from these 3 comparisons, the calculation of inter-class 

Figure S1 Graph data preprocessing process.
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differences is completed. In this way, the same calculation 
procedure is applied to compare the b-class patch with the 
e-class patch, as well as the c-class patch with the f-class 
patch. Through this process, the inter- and intra-class 
differences for each category of patches can be obtained.

The feature vectors are obtained by preprocessing the 
extracted 3D patches. Afterwards, the calculation of cosine 
similarity is performed to measure the differences and 
similarities between and within classes. The calculation 
of the dot product and the norm of vectors is required. 
The dot product represents the sum of the element-wise 
multiplication of two corresponding feature vectors. The 
inner product (A•B) of 2 n-dimensional vectors A = (a1, a2, ..., 
an) and B = (b1, b2, ..., bn) can be computed using Eq. [6]. 
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The cosine similarity ( )1 2,Similarity S S  between 2 vectors 
can be calculated using Eq. [7] after computing their inner 
product and norms.
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Assuming there are m samples in the hyperbilirubinemia 

group and m samples in the normal control group, we 
obtain feature vectors for 2 groups of patches located at 
the same positions within these 2 classes. These feature 
vectors, obtained after preprocessing, are labeled as L1, L2…
Lm and K1, and K2…Km respectively. Initially, calculate the 
cumulative differences between a particular sample patch 
(L1) and the various samples at the same position from 
the other group (K1, K2,...,Km), denoting it as difference1. 
Simultaneously, calculate the cumulative differences 
between L1 and the remaining samples within the same 
category (L1, L2,...,Lm), denoting it as difference2. Eqs. [8] 
and [9] represent the formulas for calculating the inter- and 
intra-class differences, respectively. 
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To ensure the selected patches effectively represent 
their respective categories and clearly exhibit their 
differences from the corresponding categories, they should 
simultaneously satisfy the principles of significant inter-
category differences and minimal intra-category differences. 
The measurement of each class of patches is calculated by 
dividing the inter-category differences by the intra-category 

Figure S2 Calculate the difference between different patches.
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differences, denoted as η and represented by Eq. [10]. 
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We select 25 types of 3D patches from ROI as nodes 
for the GCN network, with each node having a feature 
vector dimension of 1×128. For each node, we select the 5 
types of patches with the minimum discrepancy within the 
same image as neighboring nodes, thus creating a graph-
structured data. All samples in the dataset undergo the same 
process, resulting in a total of 606 examples of graph data. 
The entire image is used as the input for the GCN network, 
which outputs the classification result for this sample. 
The schematic diagram of the GCN network is shown in  
Figure S3. First, a graph pooling layer with a parameter 
set to 0.8 is applied. The top 80% of the most important 
feature vectors from the 25 types are selected, whereas 
the remaining nodes are discarded. Then, the remaining 
20 nodes with 1×128 features undergo a global average 
pooling layer, and the resulting output is denoted as x1. 
Next, x1 is passed through graph convolutional layer 2, 
outputting node feature vectors with a dimension of 1×128. 
Subsequently, it is passed through another graph pooling 
layer with a parameter set to 0.9. As a result, the number 
of nodes in the graph structure is reduced to 18, with 
node features dimensions of 1×128. The output is then 
subjected to another global average pooling layer, and the 
resulting output is denoted as x2. The feature vectors x1 
and x2 obtained from the 2 global average pooling layers 
are then combined, resulting in a 1×128 feature vector 
that effectively represents the feature information of the 
patch. This combined vector is then passed through a 

fully connected layer 1 to reduce its dimension, resulting 
in a 1×64 feature vector. Finally, the 1×64 feature vector 
is mapped to 2 nodes, and the classification result for this 
sample is obtained.

During the training of data using the graph convolutional 
neural network, we introduce the graph attention 
mechanism. For each type of patch in the graph structure, 
the weight iS  in all patch categories can be represented by 
calculating the cosine similarity between its own feature 
vector iX  and the global feature vector X . Higher values 
of cosine similarity indicate a stronger similarity between 
the feature vector iX  and the global feature vector, whereas 
lower values indicate a weaker similarity. The calculation 
for this is specified in Eq. [11].
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By calculating the cosine similarity between the feature 
vectors of each patch type and the global feature vector, 
we can select the top k patches with the highest similarity. 
Identifying the specific locations of these k patch types 
in the image enables us to obtain more precise location 
information for neonatal hyperbilirubinemia in brain 
MRI. Furthermore, these selected k patch types can serve 
as representative and refined feature information for the 
sample data. By summing the feature vectors X1, X2, ..., Xk 
of these k patch types, we obtain a new feature vector V. 
The calculation formula is presented in Eq. [12].
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Extract k types of patches from each sample data and 

Figure S3 Structure diagram of graph convolutional neural network.
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compute the sum of their feature vectors. The resulting 
output will consist of 606 reconstructed feature vectors 
along with their respective labels. By using a supervised 
learning method and a logistic regression model, the task of 
classification and prediction of neonatal hyperbilirubinemia 
can be further completed.

Patch selection

We selected a subset of representative patches from the 
original image consisting of 18 patch types (originally 25 
types, but reduced to 18 after two pooling layers). These 
selected patches served as feature vectors to represent the 
original samples. Subsequently, the attention mechanism 
of the graph CNN determined the weights associated with 
each node. By calculating the cosine similarity between 
the feature vector of each patch type and the global feature 
vector, we could identify the top 5 patch types with the 
highest similarity to the global feature vector. The results 
are presented in Table S1.

Patch ablation experiment

Different numbers and sizes of patches extracted during 
the patch extraction process may impact the classification 
performance of the model. Therefore, we conducted 
a comparative analysis through experiments.  The 
experimental setup involved fixing the size of patches 
at 16×16 and selecting 25 patch categories. Initially, 
while maintaining a constant patch size, we analyzed 
the performance by manipulating the number of patch 
categories. The comparison of classification performance 
for varying numbers of patch categories is shown in  
Table S2. In this instance, the chosen numbers of patch 
categories were 15, 20, 25, 30, and 35.

Subsequently, the influence of patch size on the 
c l a s s i f i ca t ion  per formance  o f  graph  CNNs was 
invest igated whi le  keeping the number of  patch 
categories fixed at 25. Patch sizes of 8×8, 16×16, 24×24, 
32×32, and 40×40 were chosen for evaluation. Table S3 
displays the prediction and classification results of the 
models for different patch sizes.

The experimental results demonstrate that variations in 
the number and size of patches have different effects on the 

Table S1 Results of cosine similarity calculation

Patch type η Patch type η

1 0.75 10 0.76

2 0.05 11 0.56

3 0.94* 12 0.25

4 0.42 13 0.14

5 0.90* 14 0.92*

6 0.49 15 0.88*

7 0.60 16 0.34

8 0.84* 17 0.77

9 0.02 18 0.76

*, the best results of the metrics. η, value of the cosine similarity. 
By calculating the cosine similarity between the feature vectors 
of these 18 patch types and the global feature vector, we 
identified the top 5 types with the highest values (i.e., types 3, 5, 
8, 14, 15).

Table S2 Comparison of classification performance for different 
numbers of patch categories

Number of patches AUC ACC SEN SPE

15 0.57 0.56 0.55 0.58

20 0.60 0.59 0.54 0.65

25 0.66* 0.66* 0.65* 0.67*

30 0.64 0.63 0.60 0.66

35 0.62 0.58 0.63 0.58

*, the best results of the metrics. AUC, area under the curve; 
ACC, accuracy; SEN, sensibility; SPE, specificity.

Table S3 Comparison of classification performance for different 
patch sizes

Size of patch AUC ACC SEN SPE

8×8 0.57 0.56 0.56 0.58

16×16 0.69* 0.66* 0.68* 0.65*

24×24 0.58 0.57 0.60 0.55

32×32 0.60 0.58 0.58 0.61

40×40 0.55 0.55 0.52 0.57

*, the best results of the metrics. AUC, area under the curve; 
ACC, accuracy; SEN, sensibility; SPE, specificity. 
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classification performance of graph CNNs. Comparative 
analysis of the experimental results indicates that selecting 
patches with dimensions of 16×16 and categorizing them 
into 25 classes enhances the experimental outcomes by 
mitigating noise interference and maximizing the inclusion 
of category information in the images. 
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