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Appendix 1

Overview of comparative algorithms

(I) The filtered-back projection (FBP) method: 
The projection data obtained from the simulation is enhanced by applying a filter (Ram-Lak filter) to emphasize the high-
frequency information in the projection data. The filtered projection data is then back-projected, and the back-projection 
results from all angles are superimposed to form the final reconstructed image.

(II) The TV-based method (54):
Reconstruction model:
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ADMM-based algorithm: 
Introducing an auxiliary variable s su x= , and construct the corresponding Lagrangian function: 
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Then decompose ( , ; )A s sx u Λ  into two subproblem sx  and su , solve them iteratively.

(III) The reconstruction method named SBM_L0 (Figure S1) proposed in article (27):
Reconstruction model:
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Where X is the group of all-channel computed tomography (CT) images, The Frobenius norm term represents the difference 
between subspace decomposition EZ and multi-energy computed tomography (MECT) images X. R(Z) represents the 
regularization term (BM3D) on eigen images tensor, λ, β, and ρ are the nonnegative parameters to balance the data fidelity 
and regularization term.

Supplementary



© AME Publishing Company. https://dx.doi.org/10.21037/qims-24-1248

ADMM-based algorithm: 
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Figure S1 The flowchart of the SBM_L0 method. SBM_L0, subspace decomposition coming block-matching method.
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Figure S2 The flowchart of the FTNN method. FTNN, framelet tensor sparsity with block-matching method.

(IV) The FTNN method (Figure S2) (22): 
Reconstruction model: 
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As shown in the figure above, ( )M =    is a tensor of non-local similar image patches extracted from the image tensor  , 
a regularization of framelet tensor nuclear norm (FTNN) is applied to measure its low rankness, which can be expressed as 
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ADMM-based algorithm: 
Introducing an auxiliary variable =  , the corresponding augmented Lagrangian function is 
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Decompose ( , , )L Λ   into two subproblem   and  , solve them iteratively.

(V) The ITS_TV method (23):
Reconstruction model: 
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( )M =    is a tensor of non-local similar image patches extracted from the image tensor   like the Figure S2 in the 
FTNN method. However, the model here uses a different tensor rank representation ( )
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ADMM-based algorithm: 
Introducing an auxiliary variable =  , the corresponding augmented Lagrangian function is
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Decompose ( , , )L Λ   into two subproblem   and  , solve them iteratively.


