Supplementary

Appendix 1
Overview of comparative algorithms

(I) The filtered-back projection (FBP) method:

The projection data obtained from the simulation is enhanced by applying a filter (Ram-Lak filter) to emphasize the high-
frequency information in the projection data. The filtered projection data is then back-projected, and the back-projection
results from all angles are superimposed to form the final reconstructed image.

(IT) The TV-based method (54):

Reconstruction model:
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ADMM-based algorithm:

Introducing an auxiliary variable #, = X, and construct the corresponding Lagrangian function:
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Then decompose £,(x,,u;;A) into two subproblem X; and ¥, solve them iteratively.

(IIT) The reconstruction method named SBM_LO (Figure SI) proposed in article (27):
Reconstruction model:
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Where X is the group of all-channel computed tomography (CT) images, The Frobenius norm term represents the difference
between subspace decomposition EZ and multi-energy computed tomography (MECT) images X. R(Z) represents the
regularization term (BM3D) on eigen images tensor, 4, 5, and p are the nonnegative parameters to balance the data fidelity

and regularization term.
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Figure S1 The flowchart of the SBM_LO method. SBM_LO, subspace decomposition coming block-matching method.

ADMM-based algorithm:
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(IV) The FTNN method (Figure S2) (22):

Reconstruction model:
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Figure S2 The flowchart of the FTNN method. FTNN, framelet tensor sparsity with block-matching method.
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As shown in the figure above, X,, =7 (X) is a tensor of non-local similar image patches extracted from the image tensor X',
a regularization of framelet tensor nuclear norm (FTINN) is applied to measure its low rankness, which can be expressed as
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ADMM-based algorithm:

Introducing an auxiliary variable & = Z, the corresponding augmented Lagrangian function is

L(X,Z,A)=R(T(2))+ 253595 (x,) +§Hx -Z +%
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Decompose L(X,Z,A) into two subproblem X and Z, solve them iteratively.

(V) The ITS_TV method (23):

Reconstruction model:
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X, =T (X) is a tensor of non-local similar image patches extracted from the image tensor X" like the Figure S2 in the
FTNN method. However, the model here uses a different tensor rank representation R(X,,) = ||S||, +¢T1._, rank(X};).

ADMM-based algorithm:

Introducing an auxiliary variable X = Z, the corresponding augmented Lagrangian function is
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Decompose L(X,Z,A) into two subproblem X and Z, solve them iteratively.
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