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Appendix 1 Automated ROI segmentation with nnU-Net

For the segmentation task, nnU-Net, an open-source extension of the original U-Net architecture, was selected as the 
framework to identify and segment ROI. nnU-Net provides a comprehensive and automated solution, encompassing the 
entire segmentation pipeline, including preprocessing, data augmentation, model training, and post-processing. Therefore, 
we did not make any significant modifications to the default settings provided by nnU-Net, but directly adopted its automated 
processing flow. It is worth noting that all annotated images were used for model training to ensure that the model can 
learn the features and patterns of the hematoma area. The inference experiment used unlabeled images to verify the model’s 
generalization ability on unknown data.

Appendix 2 Multivariate support vector regression for lesion-symptom mapping methods

After segmenting the ICH lesions, we normalized the segmented lesion mask to the CT template space using the Clinical 
Toolbox in SPM12 (45). This toolbox is specifically designed for spatial normalization of CT and MR brain images in elderly 
stroke populations, ensuring accurate registration of the lesion masks to the template space. Subsequently, we performed 
multivariate support vector regression for lesion-symptom mapping (SVR-LSM) analysis using a MATLAB-based toolbox (46). 
Unlike traditional voxel-wise analysis, SVR-LSM employs a nonlinear function to describe the symptom associations across 
the lesion map, considering the correlation between voxels. This approach provides a more comprehensive understanding of 
the associations between ICH locations and PSE, capturing spatial relationships between voxels rather than modeling each 
voxel individually. For the SVR-LSM analysis, we included all voxels that were damaged in at least 5 patients, leading to the 
exclusion of some subjects from the analysis (47). 

Appendix 3 The process of evaluating the importance of random forest features

(I) Build model: Firstly, a model is constructed using the random forest algorithm, which consists of multiple decision trees.
(II) Assessment contribution: this process typically involves calculating the average reduction in impurity (such as Gini 

coefficient, entropy, etc.) of each feature during decision tree node splitting. The more impurity is reduced, the more 
important the feature is.

(III) Normalization: in order to compare the relative importance between different features, the evaluated feature importance 
values are normalized so that they are on the same scale.

(IV) Result explanation: finally, based on the normalized feature importance values, it is possible to intuitively understand 
which features have the greatest impact on the model's prediction results.
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Table S1 Post-stroke epilepsy screening questionnaire (24)

Q1: Self-reported diagnosis:

a. Has ever been diagnosed by a doctor to have seizures/epilepsies/convulsions after discharge? a

b. How soon after discharge did you experience the first recurrent seizure? b

Only patients responded Q1a with “yes” were recorded as post-stroke epilepsy, if not, patients were asked by following questions.

Q2: Symptom-based screening questions: a, b

a. Have you ever had, or has anyone told you that you had any of the following symptom after discharge? c 

i. A seizure, convulsive, fit or spell under any circumstances? 

ii. Uncontrolled movement of part or all of your body such as twitching, jerking, shaking, or going limp?

iii. An unexplained change in your mental state or level or unawareness; or an episode of “spacing out” that you could not control?

iv. Shortly after waking up, either in the morning or after a nap, have you ever noticed uncontrollable jerking or clumsiness, such as 
dropping things or things suddenly “flying” from your hands?

v. Have you ever had repeated unusual spells?

b. How soon after discharge did the symptom happen? b

Q3: Questions about anti-seizure medications?

a. Are you currently using any anti-seizure drug including ‘valproate’, ‘levetiracetam’, ‘carbamazepine’, or ‘oxcarbazepine’? 

b. If not, when did you stop the drug? d

a: Acceptable answers to each of the questions include: “yes”, “no”, “possible”, or “don’t know”.

b: Only if the patient or caregiver can provide the approximate date or we can obtain it from the medical records, he/she were included 
in analysis.

c: Patients were diagnosed with PSE only if they fulfill 1+2+3 or 1+4 of the following: 

1. “yes” for Q2a-i or ii, 2. Provide an approximate date for Q2b, 3. “yes” for Q3a, 4. confirmed by medical records. 

If they respond “no” for any of the questions, they were recorded as non-PSE. Otherwise, they’re excluded from analysis to ensure the 
best accuracy of diagnosis.

d: An approximate year

PSE, post-stroke epilepsy.

Figure S1 Correlation between the nnU-net determined ICH volumes and the ground truth. The high Pearson correlation coefficient 
(R²=0.980) suggests a strong agreement between the nnU-Net model predictions and the actual ICH volumes. ICH, intracerebral 
hemorrhage; CI, confidence interval. 

Figure S2 Overlay lesion maps of stroke lesions in PSE patients included in SVR-LSM (55 patients in total). For a more comprehensive 
view, the lesion maps were thresholded to include only voxels that were lesioned in at least 5 participants, showing the extensive coverage of 
temporal and frontal lobes. PSE, post-stroke epilepsy; SVR-LSM, support vector regression lesion-symptom mapping. 
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Table S2 Report for beta-map with AAL atlas

Index atlas_name Voxel number

3 Frontal_Sup_L 37 out of 28,915 voxels

4 Frontal_Sup_R 35 out of 32,089 voxels

5 Frontal_Sup_Orb_L 135 out of 7,654 voxels

6 Frontal_Sup_Orb_R 140 out of 7,859 voxels

7 Frontal_Mid_L 15 out of 38,722 voxels

8 Frontal_Mid_R 31 out of 40,374 voxels

9 Frontal_Mid_Orb_L 192 out of 7,112 voxels

10 Frontal_Mid_Orb_R 220 out of 8,057 voxels

11 Frontal_Inf_Oper_L 16 out of 8,271 voxels

12 Frontal_Inf_Oper_R 13 out of 11,174 voxels

13 Frontal_Inf_Tri_L 5 out of 20,104 voxels

15 Frontal_Inf_Orb_L 185 out of 13,590 voxels

16 Frontal_Inf_Orb_R 207 out of 13,747 voxels

17 Rolandic_Oper_L 4 out of 7,939 voxels

18 Rolandic_Oper_R 21 out of 10,733 voxels

21 Olfactory_L 19 out of 2,262 voxels

22 Olfactory_R 16 out of 2,286 voxels

23 Frontal_Sup_Medial_L 39 out of 23,852 voxels

24 Frontal_Sup_Medial_R 41 out of 16,979 voxels

25 Frontal_Med_Orb_L 125 out of 5,792 voxels

26 Frontal_Med_Orb_R 130 out of 6,870 voxels

27 Rectus_L 94 out of 6,864 voxels

28 Rectus_R 99 out of 5,930 voxels

29 Insula_L 87 out of 15,025 voxels

30 Insula_R 86 out of 14,128 voxels

31 Cingulum_Ant_L 2 out of 11,289 voxels

36 Cingulum_Post_R 5 out of 2,654 voxels

37 Hippocampus_L 104 out of 7,469 voxels

38 Hippocampus_R 82 out of 7,606 voxels

39 ParaHippocampal_L 60 out of 7,891 voxels

40 ParaHippocampal_R 74 out of 9,028 voxels

41 Amygdala_L 11 out of 1,733 voxels

42 Amygdala_R 26 out of 1,965 voxels

43 Calcarine_L 70 out of 18,157 voxels

44 Calcarine_R 38 out of 14,885 voxels

45 Cuneus_L 2 out of 12,133 voxels

46 Cuneus_R 4 out of 11,323 voxels

47 Lingual_L 210 out of 16,932 voxels

48 Lingual_R 205 out of 18,450 voxels

49 Occipital_Sup_L 7 out of 10,791 voxels

50 Occipital_Sup_R 4 out of 11,149 voxels

51 Occipital_Mid_L 51 out of 25,989 voxels

52 Occipital_Mid_R 12 out of 16,512 voxels

53 Occipital_Inf_L 54 out of 7,536 voxels

Table S2 (continued)

Table S2 (continued)

Index atlas_name Voxel number

54 Occipital_Inf_R 72 out of 7,929 voxels

55 Fusiform_L 227 out of 18,333 voxels

56 Fusiform_R 269 out of 20,227 voxels

67 Precuneus_L 8 out of 28,358 voxels

68 Precuneus_R 6 out of 26,083 voxels

71 Caudate_L 26 out of 7,682 voxels

72 Caudate_R 22 out of 7,941 voxels

73 Putamen_L 110 out of 7,942 voxels

74 Putamen_R 86 out of 8,510 voxels

75 Pallidum_L 44 out of 2,285 voxels

76 Pallidum_R 65 out of 2,188 voxels

81 Temporal_Sup_L 143 out of 18,307 voxels

82 Temporal_Sup_R 149 out of 25,258 voxels

83 Temporal_Pole_Sup_L 152 out of 10,228 voxels

84 Temporal_Pole_Sup_R 180 out of 10,654 voxels

85 Temporal_Mid_L 303 out of 39,353 voxels

86 Temporal_Mid_R 281 out of 35,484 voxels

87 Temporal_Pole_Mid_L 85 out of 5,984 voxels

88 Temporal_Pole_Mid_R 119 out of 9,470 voxels

89 Temporal_Inf_L 315 out of 25,647 voxels

90 Temporal_Inf_R 383 out of 28,468 voxels

91 Cerebelum_Crus1_L 242 out of 20,667 voxels

92 Cerebelum_Crus1_R 219 out of 21,017 voxels

93 Cerebelum_Crus2_L 30 out of 15,216 voxels

94 Cerebelum_Crus2_R 32 out of 17,038 voxels

95 Cerebelum_3_L 19 out of 1,072 voxels

96 Cerebelum_3_R 26 out of 1,600 voxels

97 Cerebelum_4_5_L 110 out of 9,034 voxels

98 Cerebelum_4_5_R 95 out of 6,763 voxels

99 Cerebelum_6_L 174 out of 13,672 voxels

100 Cerebelum_6_R 172 out of 14,362 voxels

101 Cerebelum_7b_L 4 out of 4,639 voxels

102 Cerebelum_7b_R 14 out of 4,230 voxels

103 Cerebelum_8_L 10 out of 15,090 voxels

104 Cerebelum_8_R 10 out of 18,345 voxels

105 Cerebelum_9_L 26 out of 6,924 voxels

106 Cerebelum_9_R 20 out of 6,462 voxels

110 Vermis_3 10 out of 1,822 voxels

111 Vermis_4_5 135 out of 5,324 voxels

112 Vermis_6 50 out of 2,956 voxels

113 Vermis_7 5 out of 1,564 voxels

114 Vermis_8 1 out of 1,940 voxels

115 Vermis_9 12 out of 1,367 voxels

116 Vermis_10 16 out of 874 voxels

AAL, anatomical automatic labeling.
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