Supplementary

Appendix 1 Radiomics feature extraction

Radiomics feature extraction was carried out using the widely used Pyradiomics package (version 3.0.1, available at https:// pyradiomics.readthedocs.io/en/latest/). The extraction process consisted of preprocessing and feature computation stages. During preprocessing, the images were resampled to a consistent $1 \times 1 \times 1$ mm³ resolution to ensure rotational invariance. Gray values were discretized with a bin width of 10 to mitigate computational complexity. Additionally, the images were normalized via the $\mu \pm 3\sigma$ method to exclude outlier gray values. The parameters for the feature extraction settings were as follows:

This is an example of settings that can be used as a starting point for analyzing MR data with small (~3mm) slice# thickness. This is only intended as a starting point and is not likely to be the optimal settings for your dataset.# Some points in determining better values are added as comments where appropriate

When adapting and using these settings for an analysis, be sure to add the PyRadiomics version used to allow you to # easily recreate your extraction at a later timepoint:

imageType: Original: {}

featureClass:

redundant Compactness 1, Compactness 2 an Spherical Disproportion features are disabled by default, they can be # enabled by specifying individual feature names (as is done for glcm) and including them in the list. firstorder:

setting:

Normalization:

MR signal is usually relative, with large differences between scanners and vendors. By normalizing the image before # feature calculation, this confounding effect may be reduced. However, if only one specific scanner is used, or the # images reflect some absolute world value (e.g. ADC maps, T2maps (NOT T2 weighted)), consider disabling the # normalization.

normalize: true

normalizeScale: 100 # This allows you to use more or less the same bin width.

Resampling:

If slices are very thin (~1mm), such as in 3D scanned (isotropic) volumes, resampledPixelSpacing may be reduced to #(1, 1, 1). Furthermore, in case of isotropic volumes, consider disabling resampling.

On a side note: increasing the resampled spacing forces PyRadiomics to look at more coarse textures, which may or # may not increase accuracy and stability of your extracted features.

interpolator: 'sitkBSpline'

resampledPixelSpacing: [1, 1, 1]

Mask validation:

correctMask and geometryTolerance are not needed, as both image and mask are resampled, if you expect very small
masks, consider to enable a size constraint by uncommenting settings below:
#minimumROIDimensions: 2
#minimumROISize: 50

Image discretization:

The ideal number of bins is somewhere in the order of 16-128 bins. A possible way to define a good binwidt is to # extract firstorder:Range from the dataset to analyze, and choose a binwidth so, that range/binwidth remains approximately

in this range of bins. binWidth: 10

first order specific settings:

When normalizing, gray values below the mean will be negative. Shifting by 300 (3 StdDevs * 100) ensures that the # majority of voxels is positive (only outliers >3 SD lower than the mean will be negative). voxelArrayShift: 300

Misc:

default label value. Labels can also be defined in the call to featureextractor.execute, as a commandline argument, # or in a column "Label" in the input csv (batchprocessing) label: 1