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Supplementary

Appendix 1: The inclusion and exclusion criteria

The inclusion criteria were as follows:
(I) Patients with pathological diagnosis of NPC;
(II) NPC patients in the locoregionally advanced stage (III–IVa) based on the 8th edition of the International Union 

Against Cancer/American Joint Committee on Cancer staging system;
(III) Patients who received IC and concurrent chemoradiotherapy;
(IV) Clinical data (including follow-up information) and nasopharyngeal MR images of the patient before treatment were 

complete.
The exclusion criteria were as follows:
(I) Unmeasured (<5 mm) primary NPC tumor;
(II) Lack of clinical data or MR images before treatment;
(III)	 MR	images	with	insufficient	quality;
(IV) Antineoplastic therapy was administered before MR examination;
(V) Pre-existing or concurrent other primary malignant tumors.

Appendix 2: Detailed MR scanning protocols and acquisition parameters

Hospital I (Guangxi Medical University Cancer Hospital)

Patients were examined using a 3.0T MRI scanner (GE Healthcare Discovery MR750, USA). T2WI and CET1WI were 
obtained. The parameters were listed as follows: T2WI (TR =6,760 ms, TE =91 ms), CET1WI (TR =957 ms, TE =19 ms), 
matrix	size	=256×256,	FOV	=240	mm	×	240	mm,	slice	thickness	=5	mm,	flip	angle	=90°,	and	slice	spacing	=1.0	mm.	The	
contrast agent administered was Gd-DTPA (Magnevist meglumine, Bayer Health Care Pharmaceuticals, Berlin, Germany), 
which	was	given	at	a	dose	of	0.1	mmol/kg	body	weight	(flow	rate:	2.0	mL/sec).

Hospital II (Wuzhou Red Cross Hospital)

Patients were examined using a 3.0T MRI scanner (Magnetom Skyra, Siemens Healthcare, Germany). T2WI and CET1WI 
were obtained. The parameters were listed as follows: T2WI (TR =3,500 ms, TE =95 ms), CET1WI (TR =600 ms,  
TE	=11	ms),	matrix	 size	 =240×320,	FOV	=230	mm	×	230	mm,	 slice	 thickness	 =5	mm,	 flip	 angle	 =90°,	 and	 slice	 
spacing =0.5 mm. The contrast agent administered was Gd-DTPA (Magnevist meglumine, Bayer Health Care 
Pharmaceuticals),	which	was	given	at	a	dose	of	0.1	mmol/kg	body	weight	(flow	rate:	2.0	mL/sec).

Hospital III (The Second Affiliated Hospital of Guangxi Medical University)

Patients were examined using a 3.0T MRI scanner (GE Healthcare Discovery MR750). T2WI and CET1WI were obtained. 
The parameters were listed as follows: T2WI (TR =7,061 ms, TE =68 ms), CET1WI (TR =643 ms, TE =11 ms), matrix size 
=288×192,	FOV	=220	mm	×	220	mm,	slice	thickness	=4	mm,	flip	angle	=111°,	and	slice	spacing	=	0.4	mm.	The	contrast	agent	
administered was Gd-DTPA (Magnevist meglumine, Bayer Health Care Pharmaceuticals), which was given at a dose of  
0.1	mmol/kg	body	weight	(flow	rate:	2.0	mL/sec).

Appendix 3: The XGBoost algorithm

The XGBoost is a relatively new ensemble learning algorithm that has been widely used in classification and regression 
tasks, but its application in prognostic analysis is relatively limited. It enhances traditional gradient boosting by using 
Newton’s method to solve for the loss function extremes, utilizing the second-order Taylor expansion of the loss function, 
and introducing a regularization term. The training objective of the XGBoost model consists of two components: the loss 
function derived from gradient boosting and a regularization term. The principle of the XGBoost algorithm can be succinctly 
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summarized as follow, it operates on a feature vector, assigning it a corresponding output, yi:
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In this study, by incorporating a Cox loss function into the XGBoost algorithm, we successfully developed a prognostic 
machine learning model suitable for survival data to predict PFS in LANPC patients. During the model training phase, we 
fine-tuned	the	hyperparameters	using	grid	search	to	optimize	model	performance.	In	addition,	the	Harrell	C-index	was	used	
as the primary evaluation metric to assess model performance across the training cohort and multiple validation cohorts. The 
optimal hyperparameter configuration was determined according to the comprehensive performance of the model in the 
training, internal validation, and external validation cohorts.

Appendix 4: The SHAP algorithm

The SHAP packages (https://github.com/slundberg/shap) provides utilities for calculating Shapley values for a variety of 
machine learning algorithms, and is optimized for tree-based algorithms such as XGBoost and GBM. Shapley values come 
from classical game theory, and are the only additive feature attribution method that yield the combination of local accuracy, 
consistency, and allowance for missingness. The SHAP formula is as follows:
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where g  is the explaination model, M 	 is	the	number	of	simplified	input	features,	 i R∅ ∈  is the feature attribution for 
a feature i , {0,1}Mz′∈ , and 0∅ 	represents	the	model	output	with	all	 the	simplified	inputs	missing.	The	 iz ′  variables 
typically represent a feature being observed ( 1iz ′ = ) or unknown ( 0iz ′ = ).
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Table S1 The hyperparameters of the combined XGBoost survival model

Parameters Type Explanation Values

Objective String Specify the learning task and the corresponding learning objective ‘survival:cox’

Booster String Specify which booster to use: gbtree, gblinear or dart ‘gbtree’

Max_depth Int Maximum tree depth for base learners 3

N_estimators Int Number of boosted trees to fit 7

Alpha Float L1 regularization term on weights 0.001

Lambda Float L2 regularization term on weights 0.00001

Gamma Float Minimum loss reduction required to make a further partition on a leaf node of the tree 1

Min_child_weight Float Minimum sum of instance weight (hessian) needed in a child 2

Colsample_bytree Float Construct the subsample ratio for each tree column 0.5

Subsample Float The subsample ratio of the training instance 0.3

Eta Float Used in updates to prevent over-fitting step size shrinkage 0.3

XGBoost, eXtreme Gradient Boosting.

Figure S1 Removal of batch effects and radiomics feature selection. (A) Remove batch effect. The Combat harmonization algorithm 
was utilized to pool the radiomics data of MRI from different hospitals. Principal component analysis was employed for dimensionality 
reduction,	and	the	first	two	principal	components	of	radiomics	features	were	visualized	in	a	two-dimensional	scatter	plot.	The	X-	and	Y-axis	
represent the two principal component dimensions. The data were well-corrected after performing Combat. (B) Radiomics feature selection. 
The	LASSO	model	employed	a	10-fold	cross-validation	technique	to	determine	the	optimal	tuning	parameter	(λ) based on the minimum 
criteria. Hospital I: Guangxi Medical University Cancer Hospital; hospital II: Wuzhou Red Cross Hospital; hospital III: The Second 
Affiliated Hospital of Guangxi Medical University. C-index, concordance index; CET1WI, contrast-enhanced T1-weighted imaging; 
LASSO, least absolute shrinkage and selection operator; MRI, magnetic resonance imaging; T2WI, T2-weighted imaging.
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Table S2 Univariate Cox analysis of the most predictive radiomics features from T2WI and CET1WI

Sequence Filter Type Feature name HR (95% CI) P value

T2WI Wavelet.HLH GLRLM GrayLevelNonUniformityNormalized 0.317 (0.109–0.916) 0.034

Wavelet.LLH GLDM DependenceVariance 0.423 (0.207–0.867) 0.019

Wavelet.LHL GLCM MCC 0.446 (0.210–0.948) 0.036

Original Shape Flatness 0.466 (0.240–0.905) 0.024

Original Shape Elongation 0.499 (0.261–0.953) 0.035

Wavelet.LLL GLCM Imc1 0.524 (0.276–0.996) 0.049

Wavelet.HHL GLSZM LargeAreaEmphasis 2.427 (1.281–4.600) 0.007

Wavelet.HHL GLSZM ZoneVariance 2.429 (1.281–4.605) 0.007

Wavelet.HHL GLSZM LargeAreaLowGrayLevelEmphasis 2.508 (1.301–4.835) 0.006

CET1WI Wavelet.LHL GLRLM RunEntropy 0.342 (0.166–0.706) 0.004

Wavelet.LHL GLSZM SmallAreaEmphasis 0.386 (0.195–0.764) 0.006

Wavelet.LHH Firstorder Maximum 0.422 (0.189–0.942) 0.035

Wavelet.LHL NGTDM Strength 0.423 (0.184–0.972) 0.043

Wavelet.LHH GLDM DependenceEntropy 0.462 (0.229–0.934) 0.031

Wavelet.LHL GLDM LowGrayLevelEmphasis 1.944 (1.010–3.739) 0.046

Wavelet.LLL Firstorder Mean 2.166 (1.017–4.613) 0.045

Original GLCM InverseVariance 2.195 (1.063–4.532) 0.034

Wavelet.HHH Firstorder Minimum 2.261 (1.013–5.047) 0.046

Wavelet.HHL GLCM Imc1 2.605 (1.204–5.634) 0.015

CET1WI, contrast-enhanced T1-weighted imaging; CI, confidence interval; GLCM, gray level co-occurrence matrix; GLDM, gray level 
dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; HR, hazard ratio; NGTDM, neighboring gray 
tone difference matrix; T2WI, T2-weighted imaging.
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Table S3	Inter-	and	intra-class	correlation	coefficients	of	T2WI	sequence	modeling	features

Radiomics features
Inter-class correlation coefficient 

(95% CI)
Intra-class correlation coefficient 

(95% CI)

T2WI_original_shape_Elongation 0.89 (0.87–0.93) 0.94 (0.89–0.96)

T2WI_original_shape_Flatness 0.91 (0.88–0.95) 0.91 (0.85–0.95)

T2WI_wavelet-LLH_gldm_DependenceVariance 0.90 (0.87–0.94) 0.99 (0.98–0.99)

T2WI_wavelet-LHL_glcm_MCC 0.90 (0.85–0.94) 0.92 (0.87–0.95)

T2WI_wavelet-HLH_glrlm_GrayLevelNonUniformityNormalized 0.90 (0.86–0.94) 0.99 (0.98–1.00)

T2WI_wavelet-HHL_glszm_LargeAreaEmphasis 0.91 (0.86–0.93) 0.93 (0.88–0.96)

T2WI_wavelet-HHL_glszm_LargeAreaLowGrayLevelEmphasis 0.90 (0.87–0.94) 0.94 (0.90–0.97)

T2WI_wavelet-HHL_glszm_ZoneVariance 0.89 (0.84–0.93) 0.93 (0.88–0.96)

T2WI_wavelet-LLL_glcm_Imc1 0.89 (0.85–0.93) 0.93 (0.88–0.96)

CI, confidence interval; T2WI, T2-weighted imaging.

Table S4	Inter-	and	intra-class	correlation	coefficients	of	CET1WI	sequence	modeling	features

Radiomics features
Inter-class correlation coefficient 

(95% CI)
Intra-class correlation coefficient 

(95% CI)

CET1WI_original_glcm_InverseVariance 0.91 (0.88–0.95) 0.99 (0.98–0.99)

CET1WI_wavelet-LHL_gldm_LowGrayLevelEmphasis 0.91 (0.89–0.95) 0.98 (0.98–0.99)

CET1WI_wavelet-LHL_glrlm_RunEntropy 0.93 (0.88–0.96) 0.99 (0.98–0.99)

CET1WI_wavelet-LHL_glszm_SmallAreaEmphasis 0.89 (0.85–0.94) 0.97 (0.94–0.98)

CET1WI_wavelet-LHL_ngtdm_Strength 0.90 (0.87–0.94) 0.99 (0.99–1.00)

CET1WI_wavelet-LHH_firstorder_Maximum 0.91 (0.86–0.95) 0.97 (0.95–0.98)

CET1WI_wavelet-LHH_gldm_DependenceEntropy 0.89 (0.87–0.94) 0.98 (0.97–0.99)

CET1WI_wavelet-HHL_glcm_Imc1 0.90 (0.86–0.94) 0.92 (0.87–0.95)

CET1WI_wavelet-HHH_firstorder_Minimum 0.91 (0.85–0.95) 0.99 (0.99–1.00)

CET1WI_wavelet-LLL_firstorder_Mean 0.90 (0.87–0.94) 0.98 (0.97–0.99)

CET1WI, contrast-enhanced T1-weighted imaging; CI, confidence interval.
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Table S5 Prognostic performance of radiomics models

Models
Training cohort Internal validation cohort External validation cohort

C-index (95% CI) P value C-index (95% CI) P value C-index (95% CI) P value

TNM XGBoost 0.545 (0.495–0.595) <0.001 0.542 (0.459–0.625) 0.051 0.590 (0.417–0.763) 0.632

T2WI XGBoost 0.676 (0.629–0.723) 0.040 0.646 (0.566–0.726) 0.762 0.626 (0.461–0.791) 0.811

CET1WI XGBoost 0.668 (0.621–0.715) 0.009 0.648 (0.579–0.717) 0.773 0.653 (0.508–0.798) 0.970

Dual-sequence Cox 0.682 (0.637–0.727) 0.018 0.462 (0.380–0.543) 0.068 0.482 (0.304–0.660) 0.127

Dual-sequence XGBoost 0.743 (0.700–0.786) Ref. 0.663 (0.586–0.740) Ref. 0.657 (0.485–0.829) Ref.

C-index, concordance index; CET1WI, contrast-enhanced T1-weighted imaging; CI, confidence interval; ref., reference; T2WI, T2-weighted 
imaging; TNM, tumor-node-metastasis; XGBoost, eXtreme Gradient Boosting.

Table S6 Univariate and multivariate Cox regression analyses

Characteristics
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

IC 1.906 (1.327–2.737) <0.001 1.823 (1.264–2.629) 0.001

Sex 1.060 (0.702–1.601) 0.781

Age 1.002 (0.986–1.018) 0.826

History 1.041 (0.562–1.931) 0.897

Smoke 1.354 (0.912–2.008) 0.132

BMI 0.966 (0.915–1.021) 0.219

T stage (1–2 vs. 3–4) 1.096 (0.742–1.619) 0.646

N stage (0–1 vs. 2–3) 1.542 (0.901–2.640) 0.114

WHO type (I–II vs. III) 1.968 (0.626–6.182) 0.246

WBC 0.929 (0.855–1.009) 0.079

Hemoglobin 0.995 (0.984–1.005) 0.330

Platelet 1.001 (0.999–1.003) 0.366

Neutrophil 0.910 (0.824–1.005) 0.062

NLR 0.847 (0.665–1.078) 0.178

EBV-DNA 1.544 (1.084–2.199) 0.016 1.429 (1.001–2.043) 0.0499

Albumin 1.012 (1.006–1.018) <0.001 1.012 (1.006–1.018) <0.001

BMI, body mass index; CI, confidence interval; EBV, Epstein-Barr virus; HR, hazard ratio; IC, induction chemotherapy; NLR, neutrophil 
lymphocyte ratio; WBC, white blood cell; WHO, World Health Organization.
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Figure S2	Prognostic	subgroup	analysis.	Stratified	Kaplan-Meier	analyses	were	performed	to	estimate	PFS	in	various	subgroups	of	the	
pooled	cohort,	which	integrates	the	training,	internal,	and	external	validation	cohorts.	In	the	subgroups	stratified	by	EBV-DNA	(A,B),	IC	
(C,D),	T	stage	(E,F),	patients	in	the	high-risk	group	exhibited	significantly	lower	PFS	than	those	in	the	low-risk	group	(all	log-rank	P<0.01).	
The blue and red curves represent the PFS of the low- and high-risk groups, respectively. EBV, Epstein-Barr virus; HR, hazard ratio; IC, 
induction chemotherapy; PFS, progression-free survival.
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Figure S3 SHAP dependence scatter plot. The relationship between radscore (A), albumin (B), IC (C), and EBV-DNA (D) and PFS in 
LANPC	patients.	The	X-axis	represents	the	feature	value,	and	the	Y-axis	represents	the	SHAP	value	of	the	same	feature.	Vertical	dispersion	
of the data points represents interaction effects. EBV, Epstein-Barr virus; LANPC, locally advanced nasopharyngeal carcinoma; IC, 
induction chemotherapy; PFS, progression-free survival; radscore, radiomics score; SHAP, SHapley Additive explanation.
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