Algorithm S1 The FRCM-MIL training algorithm

Input:

- X: Bag of instance from WSIs, $X = \{x_1, x_2, ..., x_m\}$

Output:

- $-\hat{Y}$: Bag-level predicted label
- 1. Preprocess 20× WSIs into 1024 × 1024 image patches;
- 2. Extract feature vectors from image patches using a pretrained feature extractor:

$$F = \{f_1, f_2, ..., f_m\} \leftarrow X$$
, where $f_i \in \mathbb{R}^{1 \times d}, F \in \mathbb{R}^{m \times d}$

3. Select discriminative features:

$$F' = \{f_1, f_2, ..., f_n\} \leftarrow F$$
, where $F' \in \mathbb{R}^{n \times d}$

4. Apply the SFRM-WT to the reconstructed features F_r :

$$F_r = SFRM - WT(F')$$
, where $F_r \in \mathbb{R}^{1 \times n \times d}$

5. Use the CQAM module to aggregate confidence features F_q :

$$F_q = CQAM(F')$$
, where $F_q \in \mathbb{R}^{1 \times k \times d}$

6. Feed F_r and F_g into the feature cross-attention module (CAM):

$$\hat{F} = CAM(F_r, F_a)$$
, where $\hat{F} \in \mathbb{R}^{1 \times k \times d}$

7. Transform \hat{F} from to obtain the final bag-level prediction \hat{y} :

```
logits = MLP(LN(\hat{F}))
```

$$\hat{Y} = \operatorname{argmax}(\operatorname{logits})$$

8. Return \hat{y}

Algorithm S2 Pseudocode of the SFRM-WT Module

Input:

- X: Token features of shape (c, n, d)
- D_M : Feature modulation matrix of shape (c,h,w,2), where d = h * w

Output:

- X: Processed token features of shape (c, n, d)
- 1. Initialize D_M weight with shape (c, h, w, 2);
- 2. Reshape X from (c, n, d) to (n, c, h, w):

X = reshape(X, (n, c, h, w))

3. Apply 2D discrete wavelet transform (DWT2) on *X*:

$$X _ll, X_lh, X_hl, X_hh = DWT2(X)$$

4. Concatenate the DWT subbands along the channel dimension:

$$X = cat([X_ll, X_lh, X_hl, X_hl], dim = 1)$$

5. Apply feature modulation with the matrix D_M :

$$X_{tilde} = X * D_{M}$$

6. Apply 2D inverse discrete wavelet transform (IDWT2) on X_{tilde} :

$$X = IDWT2(X _tilde)$$

7. Reshape X back to (c, n, d):

$$X = reshape(X, (c, n, d))$$

8. Return X